STRATEGIES FOR LIQUID ANODE ALKALI BATTERIES OF HIGH ENERGY DENSITY OPERATING AT 0 to 100°C.

C. Austen Angell* and Steve W. Martin#

*Dept. of Chemistry-Biochemistry, Arizona State University, Tempe, AZ 85287 *ENERGY RELIABILITY*

Dept. of Materials Science, Iowa State University, Ames, IA 50011

Purpose

• To develop a lower temperature, thermally cycleable, Zebra cell (chosen by big corporations like GE, etc) for stationary large energy storage installations

•Strategies:

- Anode: Use Na-K alloy anode,
- **Separator**: Na-K alloy anode demands use of joint Na+/K+ conducting separator: use β'' -Al₂O₃.
- •Cathode contact electrolyte: NaAlCl₄ freezes at 185°C. Need low-melting non-volatile additives to produce *"ionic oils"*. Best choices are ionic liquids like EMIM-AlCl₄.
- •Cathode: NiCl₂ on Ni foam (or a "red oil" Br₂, or sulfur)

Impact on DOE OE Energy Storage Mission

- Enhanced operating flexibility enabled by nonsolidifying cell chemistry, allowing battery shutdown
- •Zebra cell (Na/NiCl₂) and Na/S cells with planar technology are robust.
- but.. Zebra cell and Na/S cell both are constrained to run at T>250°C.
- Shut-down in each case is tedious, and dangerous to cell integrity.
- Lower temp operation improves system efficiency
- Systems running at low temperatures, such as the Zebra cell and Na/S cells we proposed, will have higher voltages and may include alkali halide types not yet evaluated,
- e.g. Na-K/NaAlCl₄-Na,K(XYZ)/Br₂"red oil"

Recent Results

glass plate At ISU, we are commissioning a

- New density-stable flat panel cell with exchangeable electrolyte and solid state separator parts for testing the battery components,
 Liquid alkali anode contained inside β"-alumina/composite cup.
- •lonic liquid electrolyte is contained in the bottom immersing nickel (uncharged state) cathode, liquid (sulfur complex or bromine red oil) cathode or NiCl₂ (Zebra version).
- •Single ion conducting separator β'' Al₂O₃ (or novel Na boro-epoxide glasses or complex inorganic Na⁺-conducting plastic crystal)
 •Powdered β'' Al₂O₃, as base conductor, incorporated in Na⁺ conducting
- Na₂S + P₂S₅ glasses at ISU, then heat treated at 380 °C and 480 °C

Figure 2. Na $^+$ ion conductivities of pure Na $_2$ S + P $_2$ S $_5$ glasses (left) and composites with Na $\beta^{\prime\prime}$ Al $_2$ O $_3$ consolidated at the indicated T (right) and compared to oxide glass - Na $\beta^{\prime\prime}$ Al $_2$ O $_3$ composites of much lower conductivity

Cathode electrolyte: Low-melting eutectics (at ASU)

(ii) of novel inorganic Na+-conducting

plastic crystals, successful

Research Plan

At ASU:

- 1. Determine liquidus surfaces for systems of ionic liquids with (Na,K)AlCl₄ using DTA system for (preliminary studies) (b) and DSC for key cases.
- **2. Determine viscosities** to compare with measured conductivities, and then use Walden plots to evaluate conductivity losses by alkali cation self-trapping suggested by results Figure 3.
- 3. Develop all-inorganic plastic crystal alkali ion conductors of Figure 4 as alternative (higher-conducting) electrolytes for sodium-potassium-ambient-air storage systems.

At ISU:

- 1. Using commercial β'' Al $_2$ O $_3$ separators, homemade composite, and plastic crystal separators, test the adjacent cell design with ambient liquid Na-K anode (see phase diagram), and liquid cathode (bromine for alkali-halide cell), or gas cathode (for Na/air cell).
- Develop liquid halogen and liquid sulfur-type formulations for cathodes.
- **3. Produce prototype energy** storage cell, using best combination of above cell components.

Na-K phase diagram showing ambient liquids, 13 to 72at.% sodium, (from ASM 90146).