# A Single Substance Organic Redox Flow Battery

Presented By:

Dr. Paul G. Rasmussen Vinazene Inc. 734-233-3964 vinazene@gmail.com

#### Abstract

Abundant energy, in the exajoule range, is available everyday from solar and wind flux. However, green sources of this energy are subject to intermittent and/or periodic fluctuations. Mitigation of supply obstacles is possible through the use of cost effective and dispatchable energy storage methods. During Phase I of this SBIR project, Vinazene has successfully synthesized and begun characterizing a group of new electroactive organic compounds, that are amenable to large scale Redox Flow Batteries.

| Feature                              | Advantage                                          | Benefit                                                             |
|--------------------------------------|----------------------------------------------------|---------------------------------------------------------------------|
|                                      |                                                    |                                                                     |
| Single Substance                     | Less deleterious crossover problem                 | Simplicity of design                                                |
| Organic active material              | Low cost<br>Avoids toxic metals                    | Can be processed at low cost at the system level<br>Green chemistry |
| Scalability                          | Flow batteries can easily scale to the application | Increase the size of the market, from home to grid                  |
| Non-aqueous, non-acidic, non-gaseous | Higher voltages<br>Less corrosive active material  | Fewer cells needed<br>Less costly packaging                         |
| Increased solubility                 | Organic materials can be modified for solubility   | Energy density scales with solubility                               |



#### **Charging Mechanism**

The Z compound, as described in Vinazene Patent 8,080,327, undergoes the following half reactions during charging:

$$Z \rightarrow Z^{+} + e^{-}$$
  $E^{0} = -1.3V$   
 $Z + e^{-} \rightarrow Z^{-}$   $E^{0} = -1.5V$ 

$$2Z \rightarrow Z^{-} + Z^{+} \quad E^{0} = -2.8V$$

#### **Energy Density**

RFB energy scales with concentration of electroactive species. During Phase I, Vinazene has successfully synthesized Z compound variants by tailoring R1 and R2 to afford increased solubility.



#### Static vs. Flow Batteries

The following chart demonstrates the need to stir or flow charged species away from the electrodes.



# Components Compound Z



# Tetraethylammonium **Tetrafluoroborate** (TEA-BF<sub>4</sub>)

Maintains Electroneutrality

## Acetonitrile (MeCN)

Dielectric and Transport medium

#### **Cell Potential**



# Multiple Cycle Reversibility



#### **Kinetic Effects**



#### **Air and Water Effects**



## **Summary and Future Plans**

Charge/Discharge experiments are underway to optimize conditions for storage. Preliminary results for up to 30% state of charge indicate high cell resistance and the need for membrane improvement. Nevertheless initial discharge voltages as high as 2.2 v have been observed in stirred cells. An additional patent application is in preparation to cover the new active materials.

# Vinazene Inc.



**ArborWind** Next generation wind turbines

# John Schroder, EE

Consultant Vinazene/MAREC

# MAREC

Michigan Alternative & Renewable **Energy Center** 

### **Paulson Law** Alternative Energy

Siting Specialists

Acknowledgements

The Author would like to express gratitude for funding and support received from:

**Porous Power Battery Separator** Specialists

# **SPARK Ann Arbor** Small Business

**US Department of** Energy **Energy Storage** Accelerator Systems

Vinazene Team

Paul G. Rasmussen Richard G. Lawton Jeffery G. Meyer Anthony M. Troiano