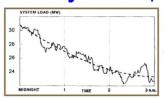


interest

Improved Properties of Nanocomposites for Flywheel Applications

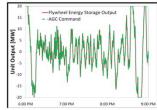
September 2012

Timothy J. Boyle, Mathias C. Celina, Nelson S. Bell, William Miller, Benjamin J. Anderson, **Mark Ehlen**



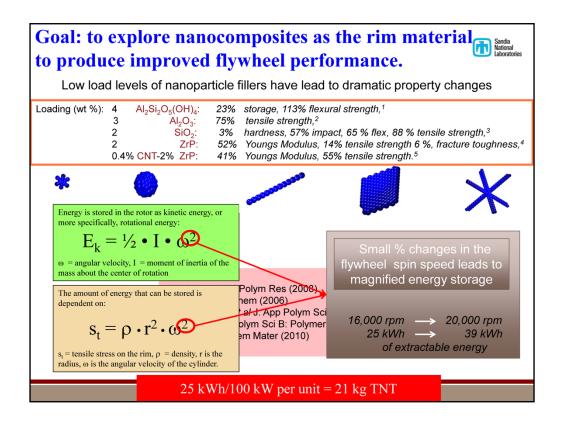
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2012-7748C


Project: Improved Flywheel Materials

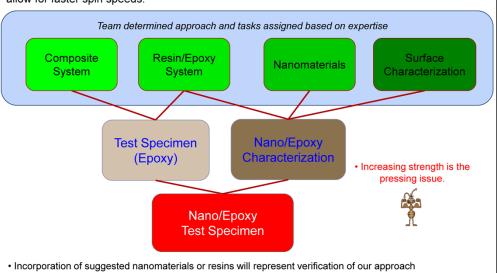
Problem: Small changes in the AC grid energy levels necessitates rapid and exact changes in the demand/surplus requirements to ensure energy leveling. Gas powered generators are lacking.

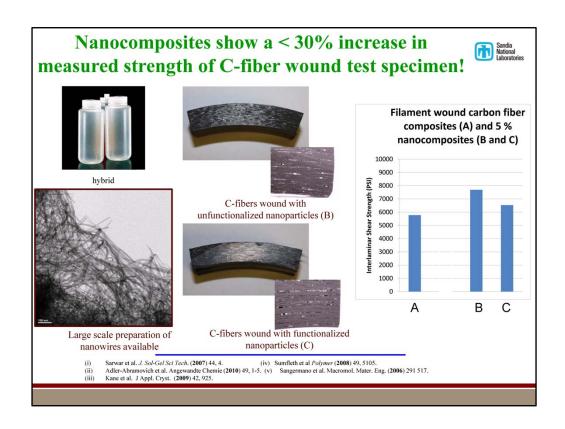
Approach: Flywheels are a clean and efficient method that can meet the energy leveling demands. To store more energy, flywheels need to spin faster, which requires stronger rims. Focused on the materials (C-fiber, glass fiber, resin) of composite flywheels. No major changes to basic design, processing parameters, and/or cost can be incurred.


A 20 MW flywheel energy storage resource accurately following a signal

Stationary Energy Storage Impact: The economics of flywheel-based energy storage might potentially be improved by a factor of 3 or more. The increased storage/supply will be necessary to meet expected future complications expected as alternative energies (i.e., solar, wind, etc.) are introduced.

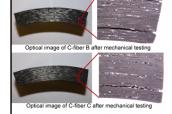
2

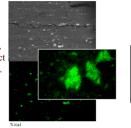

The Need for Speed Kills

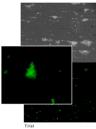

FY12 Overall Objectives: defining nanoparticle fillers effects on the 'state-of-the-art' system

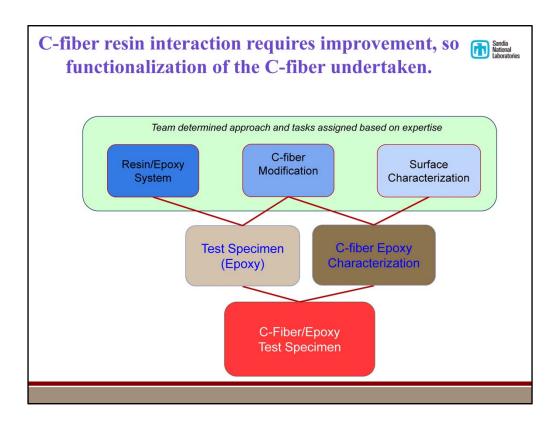
• Flywheel applications are interested in increasing the strength of the resin/C-fiber interaction to allow for faster spin speeds.

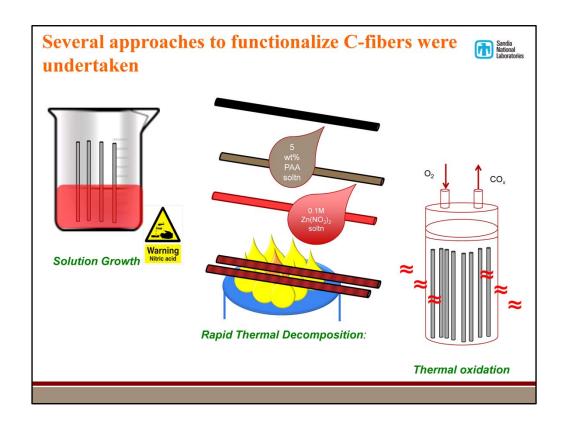
Interlaminar strength of composite test specimens for different resin systems indicated that the.... Loading Nose Supports Filament wound glass and Arc 3-point bend specimens carbon fiber composite tubes Filament wound glass fiber Filament wound carbon fiber composites Interlaminar Shear Strength (PSI) 10000 6000 4000 0 0 8000 **Resin Systems** 6000 (a) Standard: epoxy anhydride /catalyst (b) Epoxy anhydride/catalyst (c) Epoxy anhydride/catalysts/modifier 4000 2000 (d) Epoxy amine (i) system is good model to 'real-world materials' and allows for interpretation of NW additives (ii) C-fiber/resin interaction needs increased

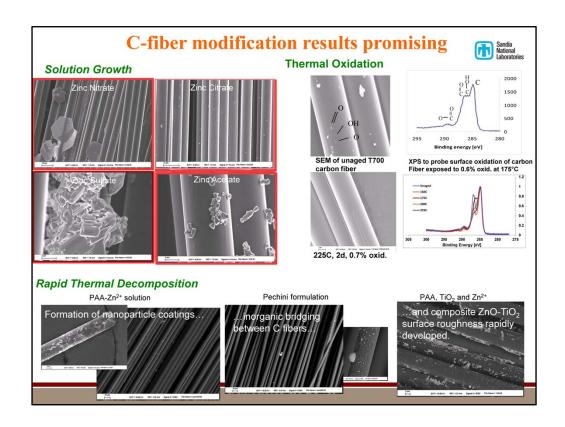

Increased shear and interlaminar-fracture strength of flywheel carbon fiber-epoxy composite by 30%, may enable 20-30% reduction in flywheel energy storage cost (\$/kW-h).




Case Study: 20-MW Beacon Power Facility (NY)


- Technology increases power capacity to 26 MW and energy capacity to 7.5 MW-service hours.
- Decreases average energy storage costs to \$1500/kW and \$6000/kW-h.
- After accounting for new-technology and additional production costs, return on improvednanocomposite investment is 4%-6% per year over 20-year service life.




Poor distribution of nanomaterial observed, implies a minimal impact for the load levels used.

Summary/Conclusions

- · Test Specimen Model identified:
- (i) good indicator of 'real world' properties,
 - \bullet Introduction of $\mathrm{TiO_2}$ nanowires led to a 30 % increase in tested strength
 - Economically correlates to a 20 % reduction in cost
 - Better properties expected upon better distribution of poorly distributed nanowires in matrix.

(ii) C-fiber/resin interaction needs increased.

- C-fiber modification underway:
- (a) solution growth,
 - surface modification shown with control indicated by anion
- (b) thermal oxidation
- \bullet $\mathrm{CO}_{\scriptscriptstyle X}$ gas observed without substantial decomposition of C-fiber
- (c) rapid thermal decomposition.
 - rapid surface modification noted with bonding between fibers.

11

Future Tasks: Milestones for FY13

- Retest resin at higher load levels consistent with test specimen.
- Functionalize/characterize TiO₂ nanowires for improved distribution.

- Re-evaluate distributed functionalized TiO₂ nanowires in test specimen.
- Optimize surface modification of C-fiber with ceramic nanomaterials.
- Determine interaction strength of C-fiber and ceramic NM.

 Introduction of optimized modified C-fiber into test specimen model system.

12

Special Thanks to:

United States Department of Energy,
Office of Electricity Delivery and Energy Reliability
Energy Storage Program Manager – Dr. Imre Gyuk

Contact Information Timothy J. Boyle

Sandia National Laboratories Advanced Materials Laboratory 1001 University Boulevard, SE Albuquerque, New Mexico 87106

Ph:(505)272-7625, Fx: (505)272-7336; tjboyle@Sandia.gov

13