

6.5 KV SILICON CARBIDE HALF-BRIDGE POWER SWITCH MODULE FOR ENERGY STORAGE SYSTEM APPLICATIONS

Dr. John L. Hostetler
United Silicon Carbide, Inc.
09/27/12

Acknowledgments

United Silicon Carbide would like to thank <u>Dr. Imre Gyuk</u> of the DOE Energy Storage Program for funding of this project and <u>Dr. Stan Atcitty</u> of SNL for his technical contributions

SBIR DE-FOA-0000628

- DOE TOPIC NUMBER 8: **High Voltage DC-Link Power Conversion System for Energy Storage Applications**
- Subsection b. Advanced Semiconductor Switches Modules for High Voltage Energy Storage Systems
- PI: Dr. John L. Hostetler

USCi colleagues: Dr. Larry Li, Dr. Leonid Fursin, Dr. Petre Alexandrov, Mike Lange, Matt Fox, Guy Moxey, Mari-Anne Gagliardi & Dr. Chris Dries

USCi Partner:

Contents

- Storage Applications
 - Role of Power Conversion
- Project Goals & Timeline
- Overall Project Objective
 - Impact
- Design Approach
 - Reliability Focused
- Device & Half-Bridge Simulations
- Next Steps
- Conclusions

Storage Applications

 Every storage technique involves Power Conversion where the most common interface is a DC-Link.

The Present Cost of Power Conversion Stages is ~30% or Higher of Total System Cost!

Project Goals & Timeline

- USCi proposes a 6.5 kV Switch Module that can enable a DC-Link Voltage up to 5 kV using SiC wide bandgap devices:
 - Junction Field Effect Transistors (JFETs) and Junction Barrier Schottky Diodes (JBS's)
- Presently, DC-Links reside at ~900 to 1100 V
 - Limited by the switch voltage ratings ~ 1200 V Si-IGBTs
- USCi has partnered with Princeton Power Systems to gain critical insight into the impact of a medium voltage switch on inverter systems
- Phase I Design of SiC Power Module and Epitaxial Growth (9 months)
- **Phase II** Fabrication of Power Module and Demonstration of 5 kV DC-link Power Inversion (2 years)

		oday N 27/12	larch 1 2013	2014		2015	
Start 6/28/12	Desi	Phase I gn & Epitaxial Growth	Device Fabri	cation & 5 kV [Phase II OC-Link Power Inversion Demo	onstration	Finish 1/7/15

Overall Project Objective

- How does higher DC-Link voltage help on the Power Conversion System Level?
 - Higher Voltage Means Lower Current
 - Losses ~ I²R and Switching- More Efficient, Smaller Systems, Less Cooling
 - High Operating Frequency—Reduces Magnetics Drastically
 - Reduced Footprint, Balance-of-System, and Cost

Si-IGBTs

2 level Inverter
900 V DC-Link
I ~ 300 A/switch
f < 10 kHz</pre>

6.5 KV SiC-JFETs

2 level Inverter 5 kV DC-Link I ~40 A/switch f >20 kHz Next Generation Topologies

SiC-JFETs

5 level Inverter 20 kV DC-Link I ~40 A/switch f >20 kHz

Impact of an all SiC Power Module on Systems

- How does a 6.5 kV SiC Switch Module Impact Storage Systems?
 - Costs and Efficiency of Power Conversion Stages

Parameter	Improvement over Si-IGBTs	Comment	
System Efficiency	1.5-2.0% (~96 to 98%)	JFETs & JBSs both contribute to efficiency improvements of module	
Switch Frequency	2-5 X (<10 kHz to > 20 kHz)	Greatly Impacts Magnetics	
Operating Current	X 10 Reduction (~400 A to 40 A)	Greatly Impacts Magnetics & BoS	
Operation Temperature	1.5 X (150 C to 250 C)	Reduces Cooling Complexity	

Why a Normally-off SiC JFET?

Switch type >	Norm Off	SIC MOSFET	SiC Bipolar	Si IGBT Stack	
Property	SiC JFET	SIC WIOSFET	SIC Bipolai		
kV	>>6.5 kV	>>6.5 kV	>>>6.5 kV	<6.5 kV	
Switching speed	>20 kHz	>20 kHz	<20 kHz	<5 kHz	
Switching Loss	1X	1X	~5X	~5X	
Driver Complexity	Simple	Simple	Complex	Moderate	
Operational Tj	>250°C	150°C	>250°C	150°C	
	No MOS Gate - Robust	MOS Gate -	V drift (BPD) -		
Reliability		Reliability	Reliability	Robust	
		Concern	Concern		

- Cascode Configuration can utilize <u>normally-on</u>
 SiC JFETS Very attractive option
- But is limited in operation temperature by the Si MOSFET
- USCi targets high temperature operation to reduce cooling needs -> SiC Normally-off JFET

JFET Design Approach

Design Focus on Reliability

- Utilize only N-type 4H-SiC Material for all devices in the module
 - Unipolar SiC devices more mature than bipolar - not sensitive to Basal Plane Defects
- No MOS Gate
 - High Mobility N-channel
- Modest Current Densities keep heat generation low (50 A/cm²)
 - Less Stress on Packaging
- Existing SiC Schottky Diode Market Proof of N-type SiC Material Reliability

Normally - Off N-type Vertical JFET

SiC JFET's

Half-Bridge Module

USCi Schottky Reliability N-type Unipolar Epitaxy

■ High Temperature Reverse Bias, $T_{case} = 175$ °C

1200 V, 10 A Junction Barrier Schottky Diode TO-220

■ Intermittent Operation Lifetime $\Delta T_j = 100$ °C

6.5 kV Half-Bridge Expected Performance

Parameter

Max DC-Link Voltage

Max Current

Target Ron (RT)

Switching Speed

Max Ambient Temp

Max Junction Temp

Target

~ 5 kV

61 A

33 m Ω

~20 kHz

~100°C

~270°C

- Full Device Simulation using TCAD
 Sentaurus
- Device Simulation Complete
- Packaging Simulation in Progress
- Gate Driver Design in Progress

Next Steps

- Phase I Tasks
- V
- Device Module Simulations

- Packaging Simulations
- Gate Driver Design
- Define Manufacturing Concept
- Epitaxial Growth of 6.5 kV JFET and JBS material

- Device Fabrication
- Module Assembly
- Half-Bridge Module Demonstration with Princeton power Systems
- Target: Alpha prototype by end of phase II (TRL 6)

USCi's New SiC Epitaxial Growth Facility

USCi's Class 100 Pilot Wafer Fab

Conclusions

- United Silicon Carbide is proposing a <u>tractable</u> approach to developing a
 6.5 kV medium voltage half-bridge switch module
 - Will enable a 5 kV DC-Link voltage which will greatly impact Storage Systems by reducing costs of power conversion stages
 - Impact current system designs as well as create a platform for highly innovative inverter/converter designs
- Module is based on an all SiC half-bridge module
 - Utilizes Vertical JFETs and JBS's
 - Focusing on reliability aspects of SiC materials
 - All N-type SiC material system
 - No MOS–Gate material
- Currently in Phase I
 - Device Simulations Completed
 - Current Efforts focused on Epitaxial Growth of 6.5 kV material

Thank You!

USCi Welcomes Your Questions

PI: Dr. John L. Hostetler
Director of Epitaxial Growth
United Silicon Carbide

jhostetler@unitedsic.com

732-355-0550