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The current energy “regulation profile” is complex with demanding, small, time energy 
perturbations, which will be magnified upon introduction of alternative energies.

Optimal AC grid usage requires accurate, rapid, and continuous 
adjustments (frequency regulation) of power pulses.
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A 20 MW flywheel energy storage 
resource accurately following a signal

Flywheels provide “near instantaneous” response

• Zero direct carbon emissions

• 85% system efficiency at transformer

• Zero storage degradation

• 20-year design life > 150,000 100% DoD charge / 
discharge cycles

In order to maintain efficiencies, speed is necessary. 

• Faster, more effective than conventional generation
– Up to 100x faster than a traditional generator

• Available separately – without generation

• Low operating cost (no fuel)
– Displaces higher cost deployments of traditional 

generators

– Could reduce CO2 emissions by 80 % (KEMA study)

A coal-fired power plant poorly following a 
regulation command signal



What is a flywheel?

1898 illustration of a White and Middleton stationary 
engine; note the large twin flywheels.



Energy is stored in the rotor as kinetic energy, or more 
specifically, rotational energy:

ω  = angular velocity, I  = moment of inertia of the 
mass about the center of rotation

Ek = ½ • I • ω2

The amount of energy that can be stored is dependant 
on:  

σt = tensile stress on the rim, ρ = density, r is the 
radius, ω is the angular velocity of the cylinder. 

σt = ρ • r2 • ω2

Flywheels have become much more advanced, requiring 
complex composite rim materials to maximize efficiency

All flywheels have similar issues – the ‘need for speed’ - kills!
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Approach: incorporation of nanomaterials into rim composite to 
improve flywheel performance.

The main focus of this project is optimization the rim 
materials to allow for increased flywheel performance

Modification of matrices’ physical properties by nanofillers 
is controlled by 4 phenomena:

(I) Hydrodynamic effects,
(II) Occluded polymer effects,
(III) Bound polymer effects,
(IV) Interaggregate attraction.

The filler properties can be manipulated by 3 primary components of 
the nanoparticle which relate to its performance in a matrix:

(I) Surface area (related to size and aggregation),
(II) Filler surface energy,
(III) Filler structure in the matrix.
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• Characterize/evaluate existing high quality flywheel 
materials

(a)  Existing operating material to establish baseline
(b)  Evaluate different resins
(c)  Evaluate nanoparticle effects on resins
(d)  Evaluate nanoparticle effects on fibers

• Measure and optimize resin processes
(a)  Cure kinetics determination
(b)  Monitoring of cure chemistry

• Nanoparticle syntheses/selection
(a)  Size
(b)  Shape
(c)  Phase
(d)  Functionalization

• Characterize/optimize nanoparticles/matrix interaction
(a)  Surface charge
(b)  Rheology
(c)  Viscosity

• Feedback loop

Approach based on defining ‘state-of-the-art’ system and 
elucidating nanoparticle fillers effects



Transverse failures are observed at  higher spin speeds in 
current flywheel materials

• Inner Ring
Hoop x-section Radial x-section

• Outer Ring
Hoop x-section Radial x-section

Voids

SEM images reveal ‘void’ formation occurring in both the inner and outer rims



Microdroplet test of the epoxy/ E- glass fiber adhesion 
strength undertaken

Epoxy Microdroplet

on E-glass fiber
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Ultimate strength of 
adhesion found to  

depend on the cure 
schedule:

Droplets cured to 150 oC have 
5x higher adhesion strength 

Adh = Force
Interfacial Area 



Isothermal cure kinetics of the anhydride epoxy reaction 
realized from IR spectroscopy measurements   

• Cure chemistry as a function of time (t) 
and temperature (T)

• Correlation with cure viscosity
• Use data as model input for 
autocatalytic behavior
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Cure viscosity monitoring using dielectric analysis and its 
correlation with cure chemistry 

• Interdigitated electrodes detect cure state via 
dielectric loss spectroscopy

• Remote sensing of cure conversion as a function of 
time (t) and temperature (T)

• Correlation with cure chemistry and rheology
• Input for 3D models linking evolution of chemistry 
and physical properties
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Ceramic nanoparticles selected as filler based on multiple 
intrinsic characteristics/properties

solvothermal

Solution precipitation
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(i) Sarwar et al. J. Sol-Gel Sci Tech. (2007) 44, 4.                        (iv)   Sumfleth et al Polymer (2008) 49, 5105.
(ii) Adler-Abramovich et al. Angewandte Chemie (2010) 49, 1-5.  (v)     Sangermano et al. Macromol. Mater. Eng. (2006) 291 517.
(iii) Kane et al.  J Appl. Cryst.  (2009) 42, 925.



The surface chemistry of the TiO2 nanoceramics were 
studied by comparing ζ-potential measurements.
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Controlling the dispersion of the nanoparticles requires 
tailored surface chemistry

Variations noted for different TiO2 nanomaterials, 
which will allow for fine tuning interaction.
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• NMA fluid gives smaller particle sizes and most stable dispersion. 
• MTHPA and HHMPA fluids lead to particle aggregation and sedimentation; however, molecular structures are not 

greatly different between the three resin curatives. 
• Of the resin curatives properties, NMA has highest viscosity of the three systems tested.  

The dispersion of the nanoparticles is highly dependent 
on the curative agent and nanoparticle

Optical Light Scattering

HHMPA
Hexahydro-4-methyl 
phthalic anhydride

NMA
Nadic methyl 
anhydride

MTHPA
Methyl 1,2,3,6-tetrahydro 
phthalic anhydride
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Dissemination of technical information as
Papers, Patents, and Presentations is forthcoming

Papers: 
(iii) Celina et al. “Cure reactions of advanced composite resins explored by high 

temperature micro ATR-IR”   241st ACS National Meeting, Anaheim, CA.  Program 
Area: POLY: Division of Polymer Chemistry Symposium (POLY002) Polymers for 
Energy Storage and Delivery

(ii) Bell and Boyle “Nanoparticle stabilization mechanisms in epoxy curative fluids: 
wetting interaction and Van Oss model parameters” (in prep for J. Materials 
Chemistry)

(i) Boyle and Ottley  “Structural Characterization of a Novel Family of Cesium 
Aryloxide” (in prep for Inorganic Chemistry).

Patents/Technical Advances:
None

Project initiated February 2010

Presentations:
(a)   Saad et al. “Synthesis of Barium/Cesium Alkoxide Precursors for the Application of Nitrogen Phosphorus 

Detectors“ Rio Grande Regional Meeting (OCT 2010 – Albuquerque).
(b)  Ottley et al. : “A Novel Family of Cesium Alkoxides as Novel Resin Catalysts” 241st ACS National Meeting, 

Anaheim, CA.  Program Area: Materials Chemistry (upcoming)
(c)   Boyle and Bell: “Novel Precursors for production of complex well-characterized nanoceramic materials” 

241st ACS National Meeting, Anaheim, CA.  Program Area: Materials Chemistry (upcoming)
(d)   Celina:  “Cure reactions of advanced composite resins explored by high temperature micro ATR-IR” 241st 

ACS National Meeting, Anaheim, CA.  Program Area: POLY: Division of Polymer Chemistry Symposium 
(upcoming) 



Summary and Conclusion

• Voids observed in the rim materials of
flywheel

• Ultimate strength of adhesion found to
depend on the cure schedule

Time (Hrs)
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• Nanoceramic materials developed with different morphologies.

• Variations noted for different TiO2
nanomaterials surface chemistry and 
behavior in resin curatives, which will 
allow for fine tuning interaction.

• Isothermal cure kinetics of the anhydride epoxy reaction 
realized from IR spectroscopy measurements

SEM image of outer ring



Future Aims
• Optimize interaction of nanoparticle and curative agent.
• Introduction of morphologically varied NP into fully 

characterized  system for impact determination.
•Complete characterization of epoxy/fiber (glass and 

carbon) adhesion through microdroplet de-bonding 
measurements  for different cure schedules

• Measure transverse yield stress of epoxy/fiber 
composites for different cure schedules

• Investigate 3-D nanoparticles
• Explore measuring stress strain behavior in pure resin 

cylindrical specimens using compression.
• Develop the 1D FE models linking resin cure with position-

dependent thermal conditions.
• Develop the measurement of thermal gradients and 

maximum cure temperature variations in thick resin 
specimens as a function of cure time. 

• Initiate nanoparticle on C-wire surface
• Magnetic component for ‘hubless’ design study initiated.
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Increasing the strength of the rim of the flywheel is necessary 
to store more energy.

Ek = ½ • I • ω2

σt = ρr2ω2

• Kinetic energy depends on 
speed of wheel which is limited 
by the tensile strength of the rim 
material

Approach is to initially determine the properties of the ‘state-of-the-art’ commercial system 
(Beacon Power) through (i) mechanical and (ii) chemical testing.  With this baseline information, 
we can then introduce well-characterized nanoparticles - both in (iii) physical (i.e., size,shape) and 
(iv) chemical properties (i.e., solubility) to elucidate/optimize changes.
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(iiii) nanoceramic 
filler materials
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Our approach is to introduce  
nanoceramic fillers into the 

resin to increase the strength 
of the rim material.  These 

nanoparticles will not 
significantly increase the 

weight of the rim but should 
allow for faster spin speeds 

and thus more stored energy
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