Hydrogen-bromine Flow Battery for Gird-Scale Energy Storage

Venkat Srinivasan
Staff Scientist
Lawrence Berkeley National Lab
vsrinivasan@lbl.gov

Overview- Hydrogen-bromine flow batteries

Timeline

• Project start date: October 2010

Project end date: September 2012

Budget

• Total: \$2M

DOE share: \$1.6M

• LBNL: \$950k

• Bosch: \$460k

• DuPont: \$480k

• 3M: \$90k

Proton Energy: No cost partner

Advantages

- Fast kinetics
 - High efficiency at high power
- No structural changes
 - Long lifetimes
- Inexpensive chemicals

Barriers

- Poor efficiency at high power
 - Cell design
- Poor life
 - Catalyst poisoning
- High cost
 - Catalyst and membranes
- Safety

The team

System design, catalyst theory

Electrochemistry, cell design, catalyst studies, new halogens

Low-cost, stable, ion-exchange and microporous membranes

Cell Design and materials