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2 Project Objective

To develop a novel, scalable, cost-effective growth
technique for producing high quality, low
dislocation density bulk gallium nitride for

substrates for GaN-based power electronics.
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Motivation for GaN Power Devices

e Footprint: WBG power
electronics offer advantages
over silicon

— No active cooling systems

» Flexibility: GaN offers additional
device design options due to
ability to alloy with AIN (higher
standoff voltages) and InN
(higher switching frequencies),
new device architectures

* Cost: SIC expensive; GaN has
market pull from solid-state
lighting to reduce cost
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» As grown GaN nucleation layers contain
disordered GaN with many stacking faults.

wirzile

* Once annealed, wurtzite GaN forms on top of
disordered GaN NL, forming nano-sized GaN
nuclei from which further high temperature
GaN growth occurs.

SEM Images of 30 GaN grain growth

* High temperature growth on the GaN
nuclei produces GaN grains.

* Growth conditions can be varied to The threading dislocation appear in bunches which are located a few
enhance the pyramidal growth mode microns apart from each other.

or lateral coalescence. Dislocations ——
are bent laterally on pyramidal facets.
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*» Dislocations are concentrated in
bunches located microns apart.

TEM cross saection
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State of the Art in Bulk GaN Growth

True bulk GaN not yet readily available
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e Traditional bulk growth techniques require
high temperatures, high pressures

— 2500°C
— 60,000 atm N, overpressure

— Adaptations dissolve N, in Ga at 1500°C,
20,000 atm

» Extremely difficult to dissolve
— Liquid ammonia (500-800C, 4,000-5,000 atm)
— Requires additional mineralizers
— 60 um/day growth rates

gh Nitrogen Pressure
Solution Growth

» Gas phase approaches require high quality T, ~ g;g;(ir:t
substrate
— Sapphire or SiC
' ' imi i i — ~ Seeds/
— Quality not hlgh, limited in size T, Cryatals
— Very expensive T<T,

Scalability Limited, Cost-Prohibitive ~ Ammono s
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Desires/Requirements for a
Bulk GaN Growth Technique for Power Electronics

» Good crystalline quality (p £ 1x105%cm-2)

 High growth rate (~mm/hr): high throughput, high volume
production

 Low impurity content

e Low background carrier concentration (~1x10'® cm-3)
» Scalable

» Controllable

 Manufacturable

 Reasonably inexpensive

» Applicable to InN, GaN, AIN, and IlI-N alloys
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1/2N, + 3e— N=:. The Reactive Intermediate

T. Goto and-Y. Ito, “Electrochemical reduction of nitrogen in a molten chloride
salt” Electrochimica Acta, Vol. 43, Nos 21-22, pp 3379-3384 (1998).

Found that nitrogen was continuously and nearly

guantitatively reduced to nitride ions

Advantages of using N, gas:

N, gas IN
Power Supply * Clean )
N3 gsz SUT * Inexpensive
(RGA) Cathodic Reaction « Control over precursor conc.
1/2N, + 3e = N* « Continuous, controlled supply
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,/ éandla s Patented New Growth Technique:
». Electrochemical Solution Growth (ESG)

Potentiostat

-

Create lonic Precursors
Electrochemically:

2Ga > 2Ga* + 6e-
N, + 6e- 2> 2N3
Ga+ N, =2 Ga*'+ N3-> GaN

Spinning Motor

GaN boule

Use salt flow to deliver precursors
to seed crystal surface

450C

1 atm Increase growth rate through flux

of reactants (increase spin rate)

Precursors can be replenished as they are consumed
Advantage: Continuous, isothermal or steady-state growth

U.S. Patent Issued October 2008 rh "Sa",;mm'h':m




Electrochemical Solution Growth (ESG):
Previous Work

Potentiostat

*Electrochemistry studies
Spinning Motor *Preliminary fluid dynamics
*Growth rates ~mm/hr
GaN boule ) ]
*Chemistry studies
*ESG autonucleation:
emm-sized crystals in 2 hrs

Bandedge
photoluminescence

*ESG boule growth:

*Deposition of GaN at seed
surface

Next step: Developing quality of crystals
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,;f§?$é\3d Crystal Growth Technique Development

LioN + Ga, 450°C

Potentiostat

Ni cathode Pt/Ga or Mo/Ga
anode

Quartz tube
LiCI-KClI
LizN, 450°C

MESA West 18kU 188um
N-3
R Vo e © Produced numerous wurtzite GaN crystals;
_ s Al @ This crystal was ~1.25mm long x 0.8mm wide
Furnace coils V< i

Ga = Ga*™3 + 3e-
Ga* + N3 = GaN
3Li* + 3e- = 3 Li ) e




Seed Crystal Growth Experiments

 Motivation:

— Better understand the experimental
conditions under which GaN is
formed

e Systematic set of

electrochemical experiments vh
conducted pits

« Ga oxidation, Li;N as nitride Li
source plating

 GaN formed only under one
experimental condition

e Optimization straightforward
« DOEX setup performed Ga+Li;N > GaN + 3L

Current

OCP
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Boule Growth Reactor Design

susceptor

”

Electrode
mounting bracket

Previous Setup New Reactor

Positional and rotational control through
computer-controlled stepper motors and
machined mounting bracket

Ring Stand & Clamps --
irreproducible and clumsy

Temperature Control through Temperature Control through reactor temperature
variac power supply feedback to power supply
Quartz crucibles and electrodes p-BN and/or stainless steel materials
Cement mounting of seed crystal Precision-machined SS mechanical susceptor
Reactor located in secure area Accessible to uncleared personnel
) oo
Acknowledgements: M.J. Russell, P. Michel Laboratories




Gen-2 Boule Growth Reactor
Up to 1.5" diameter




FY11l: Design of Experiments
Boule and Seed Growth

Standard |[Temperatu|Spin Rate Dsgp()atdh Static/ LisN Conc.| Duration 4_Fact0r|a|
Order |re(deg C)| (rpm) (mm) Dynamic (mole %) (hr) .

1 375 0 2 Static 0 3 ReSOIUtlon IV
2 550 0 2 Static 10 3 18 Runs
3 375 400 2 Static 10 10 2 R I
4 550 400 2 Static 0 10 ep ICateS
5 375 0 18 Static 10 10
6 550 0 18 Static 0 10 . .
7 375 400 18 Static 0 3 Similar for Seed Growth
8 550 400 18 Static 10 3
9 375 0 2 Dynamic 0 10
10 550 0 2 Dynamic 10 10 .
11 375 400 2 Dynamic 10 3 Growth: Y/N
12 550 400 2 Dynamic 0 3 Amount of growth
13 375 0 18 Dynamic 10 3 . . .
14 550 0 18 Dynamic 0 3 DlSIIOC&“On der?SIty
15 375 400 18 Dynamic 0 10 Optical properties
16 550 400 18 Dynamic 10 10 EI t . | t
17 450 200 10 Static 1 5 ectrical properues
18 450 200 10 Dynamic 1 5

Each experiment duplicated = 36 experiments
Similar set (36 experiments) generated for Seed Growth

Acknowledgement: Steve Crowder
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‘Nature Deposits CaS0,.2H,0 Single Crystals
»from Solutions of lonic Precursors

Giant crystal caves, Naica, Mexico
Photo from National Geographic
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