

Enabling Next-Generation Power Electronics:

Electrochemical Solution Growth (ESG) Technique for Bulk Gallium Nitride Substrates

Karen Waldrip

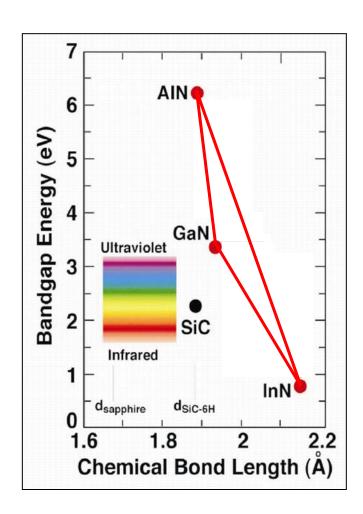
Dept. 2546, Advanced Power Sources R&D Sandia National Labs, Albuquerque, NM knwaldr@sandia.gov, (505) 844-1619

Acknowledgements:

Mike Soboroff, Stan Atcitty, Nancy Clark, and John Boyes
David Ingersoll, Frank Delnick, and Travis Anderson
2010 DOE Peer Review, Nov. 2-4, Washington, DC

Funded by the Energy Storage Systems Program of the U.S. Department Of Energy through Sandia National Laboratories

Project Objective



To develop a novel, scalable, cost-effective growth technique for producing high quality, low dislocation density bulk gallium nitride for substrates for GaN-based power electronics.

- Footprint: WBG power electronics offer advantages over silicon
 - No active cooling systems
- Flexibility: GaN offers additional device design options due to ability to alloy with AIN (higher standoff voltages) and InN (higher switching frequencies), new device architectures
- Cost: SiC expensive; GaN has market pull from solid-state lighting to reduce cost

Motivation for Bulk Growth

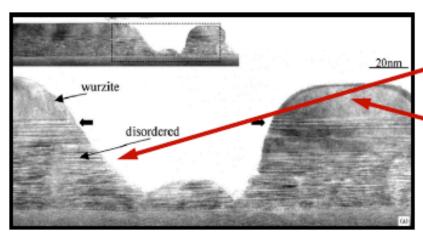
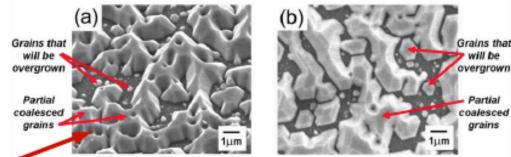
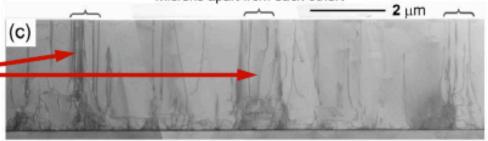



Figure from Lada et al., J. Crystal Growth 258, 89 (2003).

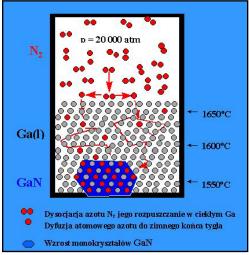

- High temperature growth on the GaN nuclei produces GaN grains.
- Growth conditions can be varied to enhance the <u>pyramidal growth mode</u> or lateral coalescence. Dislocations are bent laterally on pyramidal facets.
- Dislocations are concentrated in bunches located microns apart.

- As grown GaN nucleation layers contain disordered GaN with many stacking faults.
- Once annealed, wurtzite GaN forms on top of disordered GaN NL, forming nano-sized GaN nuclei from which further high temperature GaN growth occurs.

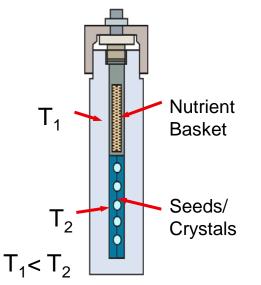
SEM Images of 3D GaN grain growth

The threading dislocation appear in bunches which are located a few microns apart from each other.

TEM cross section


State of the Art in Bulk GaN Growth

True bulk GaN not yet readily available

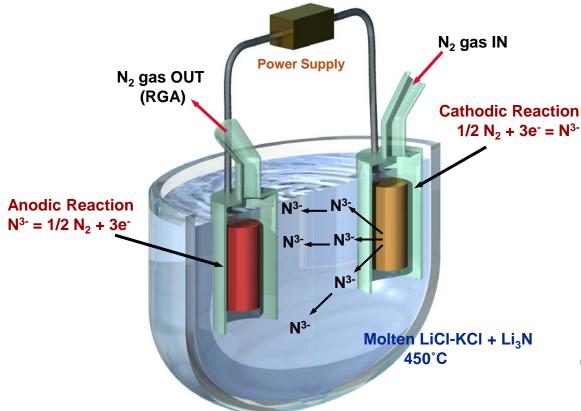

- Traditional bulk growth techniques require high temperatures, high pressures
 - 2500°C
 - 60,000 atm N₂ overpressure
 - Adaptations dissolve N₂ in Ga at 1500°C, 20,000 atm
- Extremely difficult to dissolve
 - Liquid ammonia (500-800C, 4,000-5,000 atm)
 - Requires additional mineralizers
 - 60 μm/day growth rates
- Gas phase approaches require high quality substrate
 - Sapphire or SiC
 - Quality not high, limited in size
 - Very expensive

Ammono IEEE Spectrum

High Nitrogen Pressure Solution Growth

Ammonothermal

Desires/Requirements for a Bulk GaN Growth Technique for Power Electronics

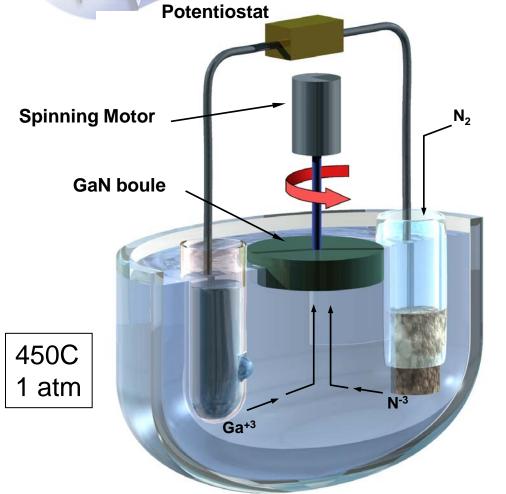

- Good crystalline quality ($\rho \le 1 \times 10^5 \text{cm}^{-2}$)
- High growth rate (~mm/hr): high throughput, high volume production
- Low impurity content
- Low background carrier concentration (~1x10¹⁶ cm⁻³)
- Scalable
- Controllable
- Manufacturable
- Reasonably inexpensive
- Applicable to InN, GaN, AIN, and III-N alloys

$1/2N_2 + 3e^- \rightarrow N^{-3}$: The Reactive Intermediate

T. Goto and Y. Ito, "Electrochemical reduction of nitrogen in a molten chloride salt" Electrochimica Acta, Vol. 43, Nos 21-22, pp 3379-3384 (1998).

Found that nitrogen was continuously and nearly quantitatively reduced to nitride ions

Report of nitride concentration in LiCI in literature: 12 mole %


Advantages of using N₂ gas:

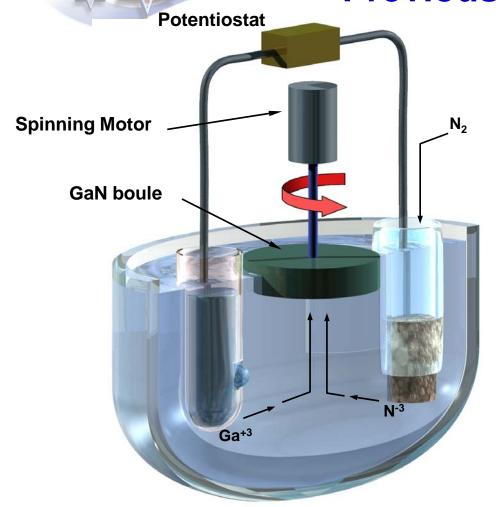
- Clean
- Inexpensive
- Control over precursor conc.
- Continuous, controlled supply

Sandia's Patented New Growth Technique: Electrochemical Solution Growth (ESG)

Create Ionic Precursors Electrochemically:

$$2Ga \rightarrow 2Ga^{+3} + 6e^{-}$$

$$N_2 + 6e^{-} \rightarrow 2N^{-3}$$

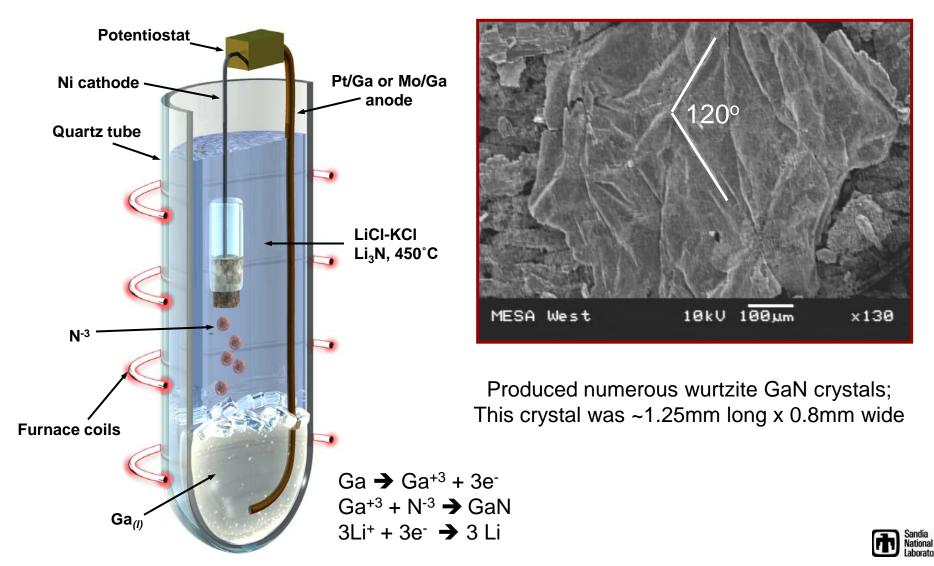

$$Ga + N_2 \rightarrow Ga^{+3} + N^{-3} \rightarrow GaN$$

Use salt flow to deliver precursors to seed crystal surface

Increase growth rate through flux of reactants (increase spin rate)

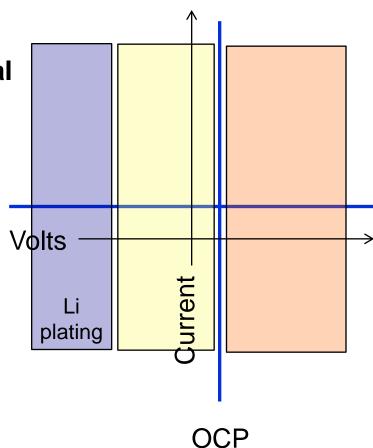
Precursors can be replenished as they are consumed Advantage: Continuous, isothermal or steady-state growth

Electrochemical Solution Growth (ESG): Previous Work

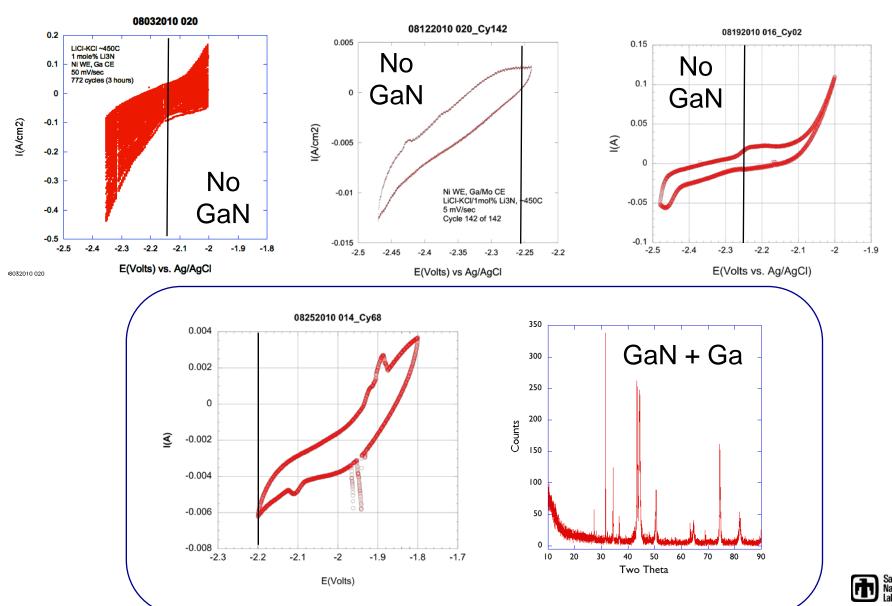


- •Electrochemistry studies
- Preliminary fluid dynamics
 - •Growth rates ~mm/hr
- Chemistry studies
- ESG autonucleation:
 - •mm-sized crystals in 2 hrs
 - •Bandedge photoluminescence
- •ESG boule growth:
 - Deposition of GaN at seed surface

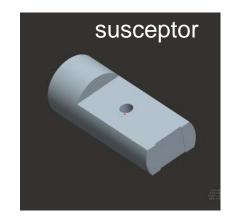
Seed Crystal Growth Technique Development


Li₃N + Ga, 450°C

Seed Crystal Growth Experiments


Motivation:

- Better understand the experimental conditions under which GaN is formed
- Systematic set of electrochemical experiments conducted
- Ga oxidation, Li₃N as nitride source
- GaN formed only under one experimental condition
- Optimization straightforward
- DOEx setup performed



Seed Crystal Results

Boule Growth Reactor Design

Previous Setup

Ring Stand & Clamps -- irreproducible and clumsy

Temperature Control through variac power supply

Quartz crucibles and electrodes

Cement mounting of seed crystal

Reactor located in secure area

New Reactor

Positional and rotational control through computer-controlled stepper motors and machined mounting bracket

Temperature Control through reactor temperature feedback to power supply

p-BN and/or stainless steel materials

Precision-machined SS mechanical susceptor

Accessible to uncleared personnel

Gen-2 Boule Growth Reactor Up to 1.5" diameter

FY11: Design of Experiments Boule and Seed Growth

Standard Order	Temperatu re (deg C)	Spin Rate (rpm)	Seed Depth (mm)	Static/ Dynamic	Li ₃ N Conc. (mole %)	Duration (hr)
1	375	0	2	Static	0	3
2	550	0	2	Static	10	3
3	375	400	2	Static	10	10
4	550	400	2	Static	0	10
5	375	0	18	Static	10	10
6	550	0	18	Static	0	10
7	375	400	18	Static	0	3
8	550	400	18	Static	10	3
9	375	0	2	Dynamic	0	10
10	550	0	2	Dynamic	10	10
11	375	400	2	Dynamic	10	3
12	550	400	2	Dynamic	0	3
13	375	0	18	Dynamic	10	3
14	550	0	18	Dynamic	0	3
15	375	400	18	Dynamic	0	10
16	550	400	18	Dynamic	10	10
17	450	200	10	Static	1	5
18	450	200	10	Dynamic	1	5

4-Factorial
Resolution IV
18 Runs
2 Replicates

Similar for Seed Growth

Growth: Y/N
Amount of growth
Dislocation density
Optical properties
Electrical properties

Each experiment duplicated = 36 experiments Similar set (36 experiments) generated for Seed Growth

Acknowledgement: Steve Crowder

Nature Deposits CaSO₄.2H₂O Single Crystals from Solutions of Ionic Precursors

Giant crystal caves, Naica, Mexico

Photo from National Geographic

