

Dynamic Islanding: Improving Electric Service Reliability with Energy Storage

Emeka Okafor American Electric Power Nov 2nd, 2010

Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy through Sandia National Laboratories

Project Description

- Outages on distribution system can last several hours.
- Energy Storage Systems can be leveraged to reduce impact of outages.
- Project demonstrates ability of Energy Storage to mitigate outage impact.
- Three 2-MW systems commissioned in 2009.
- Demonstrated ability to provide backup power.

2006 - Battery in a Substation for Capital Deferral

- Installed 1MW, 7.2 MWh of NAS battery on a feeder to defer building a new substation
- Daily Peak Shaving

AEP 2006 Project – Performance Data

- Scheduled trapezoidal Charge & Discharge profiles
- Improved the feeder load factor by 5% (from 75% to 80%)
- AC Efficiency 80% Effectively
 90% due to reduced T&D losses
 (IEEE Transactions on Power Delivery, Vol23, NO.4, Oct 2008, pp2168-73)

Three
Successful
Years of
Peak
Shaving

New Features in the 2009 Storage Devices: Load Following

- Increase battery life with fewer shallow discharges
- Increase availability for backup power and other valuable services

New Features in the 2009 Storage Devices: Backup Power

Assumption: excludes traditional major events and momentary outages.

2008 Projects – To Improve Service Reliability

- 2MW, 14.4 MWh in Bluffton, Ohio
- Two other identical sites in West Virginia and Indiana (2008)
- All with dynamic islanding

2008 Projects – To Improve Service Reliability

2MW, 14.4 MWh in Churubusco, IN

2MW, 14.4 MWh in Milton, WV

Churubusco, IN: Battery Islanding Zones.

System Normal: Grid connected. Battery disconnected.

Fault at F8; loss of grid power. All reclosers and switches in the island open.

Battery picks up island based on last load information.

Grid power restored.

Battery disconnected. Load connected back to the grid.

Live Islanding Test Information

Test Site : Balls Gap, Milton, WV

Test Date: July 8, 2009

Island Size: 700 customers

Time to island customers: 0.5 to 2 min.

Power Outage Duration: 28 min.

Time to Exit Island: 6 sec. (not Synchronized)

Average Island Load: 0.8 MW

gridSMART**

This First Community-Scale Backup Power with NAS Battery is Partially Funded by DOE/Sandia

Islanding Data – Battery Load & Energy

Old Islanding Scheme at Milton

New Islanding Scheme at Milton

Live Islanding Experience

NaS Storage Site: Balls Gap, Milton, WV

Outage Date: Dec 18, 2009Outage Cause: Heavy snow

leland Size.

• Island Size: 25 Customers (small area)

Time to island customers: 2 min.
 Power Outage Duration: 2 Days

• Time to Exit Island: 6 sec. (not Synchronized)

Average Island Load: 167 kW

Lessons Learned

Islanding automation improvement.

 Design Improvement : Scheme should work with loss of 1-MW string.

No opportunity at other sites.

Battery used for voltage support

Conclusion

- Successful deployment of energy storage systems.
- Demonstrated "Islanding".
- Automation and Design improvement.
- Demonstrated load-following and voltage support.