

seearch & Tachnology

Design, Fabrication, and Test of a 5 kWh Flywheel **Energy Storage System Utilizing a High Temperature Superconducting Magnetic Bearing**

Mike Strasik Flywheel Program Manager

JR Hull, JA Mittleider, JF Gonder, PE Johnson, KE McCrary, and CR McIver

2010 Energy Storage Systems Program, November 2-4, 2010 Washington DC

This work was supported by the U.S. Department of Energy/Sandia National Laboratories Energy Storage Program Contract #598172 and #1059559.

System Architecture for Deployment of a 3 kW / 5 kWh Flywheel Energy Storage System – DOE/Sandia Project

Engineering, Operations & Technology | Boeing Research & Technology

Superconducting Flywheel System

Objective: Design, build and deliver a flywheel energy storage system tailored for off-grid applications

Benefits of Using FESS Instead of Idling 2nd Generator on Standby

- Reduce Generator Maintenance by 50% (estimate)
- Reduce Fuel Costs by \$200k/yr (estimate)
- Lower Pollution

One of three deployment options for the demo system, shown in relation to diesel genset and balance of system.

Energy Storage Program 5 kWh / 3 kW Flywheel Energy Storage System Project History and Roadmap

Engineering, Operations & Technology | Boeing Research & Technology

Superconducting Flywheel System

System integration

Post-test evaluation

Conduct lab spin testing

Flywheel Energy Storage System

Engineering, Operations & Technology | Boeing Research & Technology

Superconducting Flywheel System

Why Pursue Flywheel Energy Storage?

- Environmentally clean (green)
- Low maintenance
- Potential for high power density (W/kg) and high energy density (W-Hr/kg)
- Can handle rapid charge and discharge rates without degradation
- Cycle life times of >25 years
- Broad operating temperature range

Why use high temperature superconducting bearings?

- Very low bearing losses to extend the idle mode
- Simple passive system
- HTS bearings will support ultra high-speed flywheels for high energy density
 - (Energy = (1/2) (Moment of Inertia)
 (Spin Speed)²)

5 kWh / 3 kW Flywheel System Design

Engineering, Operations & Technology | Boeing Research & Technology

Superconducting Flywheel System

- Design Highlights
 - Non-Contact Hybrid Composite Rotor with Aluminum Hub
 - Direct Cooled HTS Bearing with Passive Damper
 - Full Containment System
 - Redesigned Touchdown (Backup) Bearings
 - Custom Encoder for True Rotational Position

5 kWh Boeing Modular Flywheel Design (DOE/Sandia)

Basic Bearing Construction

Engineering, Operations & Technology | Boeing Research & Technology

Superconducting Flywheel System

high-temperature superconductor

The permanent magnet levitates with passive stability, rotating freely while maintaining position

permanent magnet

Relevant Properties of Superconductors:

- 1. Zero resistance to dc current flow
- 2. Strong diamagnetism, keeping applied magnetic flux from entering the superconductor

Bulk crystal form (not wire) is preferred for bearings

Superconducting Bearing System

Engineering, Operations & Technology | Boeing Research & Technology

Superconducting Flywheel System

Electromagnetic Models Nd-Fe-B Fe Fe Magnet Fe Magnet Magnet YBCO Crystals Component: BMOD 1,1

Direct-Cooled HTS Bearing Design – Generation 3

Engineering, Operations & Technology | Boeing Research & Technology **Superconducting Flywheel System Total Loss** • 3.3 W at 2.1 mm gap • 1.6 W at 3.9 mm gap **YBCO Bearing Stator** YBCO G-10 Support **Cold Head Bearing Rotor** Benefits: ~60% fewer parts Reduced power requirements Eliminates the requirement for LN₂ Reduces maintenance

Quill Test Dynamic Model vs. Quill Test Data

Engineering, Operations & Technology | Boeing Research & Technology

Superconducting Flywheel System

- Normal max operational speed is 22,500 RPM
- Quill tested at 105% or 23,675 RPM
- Rotor Total Indicated
 Runout (TIR) held to 0.002"
- didn't need to balance

xLrotor forced response plot showing the amplitude of unbalance vs rpm

5 kWh Flywheel Hardware Completed

Engineering, Operations & Technology | Boeing Research & Technology

Superconducting Flywheel System

2010-2011 Future Tasks

Engineering, Operations & Technology | Boeing Research & Technology

Superconducting Flywheel System

- Task 1: Complete fabrication of remaining components
 - Fabricate or modify mechanical components of the 5 kWh / 3 kW FESS system
- Task 2: Continue Integration of 5 kWhr / 3 kW FESS
 - Continue integration of 5 kWh flywheel system to prepare for spin testing
 - Integrate and test new flywheel damper system
 - Perform motor encoder test and motor controller hardware integration test
 - Integrate flywheel rotor system into one vacuum / containment system which will be mounted into a single external support structure
- Task 3: Low speed testing of 5 kWhr / 3kW FESS
 - Conduct and analyze low-speed testing of 5 kWh flywheel system
- Task 4: Communicate program results and progress

Summary

Engineering, Operations & Technology | Boeing Research & Technology

- The 5 kWh rotor is complete and fully tested at 105% speed
- The direct cooled High Temperature Superconducting bearing was successfully tested
 - Losses measured
 - Thermal models
 - Cryocooler performance measured and verified
- System design completed
- Majority of flywheel mechanical parts built and delivered
- Remaining parts on order
- Started system integration