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EES technologies and PNNL focus
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PNNL strategy in stationary EES R&D

EES R&D 
at PNNL

EES Technologies
Novel redox flow batteries, MWhs
New gen Na-batteries, up to MWhs
Low cost, long life Li-ion, community storage
…

Crosscutting science
Advanced diagnostic 

study, NMR, TEM, etc.
Electrochemical 

study
• Mass/charge transport
• Electrical fields
• Flow, thermal, … 

• Basic chemistry
• Materials structure
• Physical properties

• Electrochemical activity
• Reaction kinetics
• Performance/chemistry/structure

Computer 
Modeling

Materials synthesis, 
 Ionic membrane
 Mixed conducting electrodes
…

Materials

Grid analytics on EES
• Roles of storage in US grids
• Value, locations, targets
• Cost and performance requirements

Collaboration 
with industries, 
universities, 
etc.



Actual 
production

Generation 
schedule

Real-time operation

when

• Located at strategic 
location in bulk power 
to reduced congestion

• In distribution 
system/home to 
reduce distribution  
congestion
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Grid analytics on energy storage technologies 
( discussed by Dr. Kintner-Meyer)

PNNL Electric Infrastructure Operations Center
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Electrodes-bipolar plate

Redox electrolytes

Membranes/separators

Other stack components
Modeling & Simulation

Design and prototype

PNNL

Other labs 

Universities

Industries

Small business

Scale up

System design/engineering

Demonstration

Production

Battery 

manufacturers

Utilities
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Core team

Vertical team

Redox flow battery RD&D



Toward cost reduction and 
commercialization

o Develop cost-effective, optimized components:

o Develop novel cell/stack designs/engineering:

Scale production

o Demonstration (kWh prototype)

20152014

• Electrodes of improved electrochemical activity
• Membrane/separator of high conductivity, 

selectivity and stability

• Reduce shunt current
• Increase current density (>50mA.cm-2)

• Electrolytes, higher energy capacity and 
improved stability;

Current focus



Electrolyte development

 Alternative redox couples to all V: 

Fe3+/Fe2+ vs. V3+/V2+, …

 Supporting electrolytes:

 Chloride acid

 Sulfate-chloride mixed acid

(to be discussed by Dr. Liyu Li)

2 2 3 3[ 3 ] ( )VO H O VO OH H O+ +→ +

3 2 5 22 ( ) 3VO OH V O H O→ ⋅



Stability of chloride electrolytes
V specie 

-5°C 25°C 40°C
sulfate Chloride sulfate Chloride sulfate Chloride
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 Energy capacity up to 2.3M V over 0~50°C (1.7 M and 10~40oC for 
current sulfate chemistry), due to change in chemistry:
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Electrochemical properties of all V chloride system

Chloride system shows higher charging and discharging potential for the same condition.
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Performance of all V chloride batteries

Chloride Sulphate
7th 2.05 Ah 1.77 Ah

94th 1.95 Ah 1.46 Ah

Loss 0.06%/cy 0.24%/cy
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 Chloride system shows better and stable 

performance 

30% energy density improved; Lower capacity loss 

 Negligible, if any, chlorine gas evolution



Electrochemical properties of Fe/V redox couples
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 Fe3+/Fe2+ (positive) vs. V3+/V2+, Eo=1.02 V

 Advantages over Fe/Cr system: no H2 evolution and without catalysts 

 Over V/V system: significantly improved chemical compatibility by avoiding 

high oxidant V5+, allowing use of low cost materials, e.g. separator



Battery performance of Fe/V 
chloride system
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On going research on the electrolyte system with higher 
concentration and improved efficiency



Membrane/separator development
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Nafion

Cation layers

After Huamin Zhang

 Future focus on optimization of Nafion and searching its low cost alternatives via 

collaboration with ORNL, SNL, Penn State, DuPont, …

 Develop cost-effective, optimized membranes or separators that can demonstrate 
high ionic conductivity, selectivity and mechanical/chemical durability through 
collaboration with universities, among national labs, industries

 Nafion modification

 Surface coating (PPR, PANI)

 Nano-composite doping with 

SiO2

 Hydrocarbon membrane: 
 S-Radel and SPEEK

 Degradation Mechanism

Collaborated with Prof. Mike 

Hickner of Penn State



Electrodes/bi-polar plates of improved 
electrochemical activity

(ηct)a + (ηct)c

(ηc)a + (ηc)c

IR
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Current increasing

Eo

(ηct)a + (ηct)c – activation polarization

(ηc)a + (ηc)c – concentration polarization

IR – Ohmic loss or polarization 

E = Eo – [(ηct)a + (ηc)a ] – [(ηct)c + (ηc)c ] – iRi = iR

 Improve carbon/graphite electrode activity and current capability by 
modifying surface chemistry and structure/microstructure 

 Carried out thermal oxidation, doping and nanostructuring



Na-batteries

 Na-beta alumina electrolyte batteries (SBB)

Na-S or Na-Ni/NaCl

 Na-NaSicon electrolyte batteries

 Na-ion (aqueous or 

non aqueous electrolyte) batteries

~300

RT

O
pe

ra
tin

g 
o C

Why Na-battery chemistries?

 Li-resources constrains;

 Low cost of raw materials

Electrochemical storage that utilize Na- or Na-containing electrodes and a 
Na+ conducting electrolyte, either solid or liquid



16

Development of Planar SBB
 PNNL (supported by DOE-ARPA-E, with Eagle Pitcher (lead )) is 

developing new generation Na-beta batteries that can meet economic and 
performance requirements for wide market penetration

To be 
discussed by 
Dr. Vince 
Sprenkle



Na-ion battery development
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 Search materials and 
structures that are capable 
of facile Na+ insertion/ 
deinsertion, and develop 
low cost Na-ion batteries

To be discussed by 
Dr. Jun Liu
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PNNL 
stationary 
storage

Unique Li-ion for 
community storage
 Long cycle life (>6,000 cycles)

 Low cost (<$250/kWh)

 Low P/E (≤0.5)

 Easy heat management

To be discussed 
by Dr. Choi



Summary and Future Work

 PNNL has adopted an systematic approach in searching  
suitable technologies, including novel redox flow batteries, 
Na-batteries and low cost, long life Li-ion batteries, for 
distribution and community storage. 

 Substantial progress has achieved in development and 
optimization of key materials components and cell designs, 
which include new redox flow battery electrolytes, electrodes 
and electrolytes for planar Na-beta alumina batteries, etc.

 Future work will focus on cell scale up, stack design and 
engineering, while continuing efforts on 
materials/components, through collaboration with academia, 
industries, and among national labs.

Please follow other talks from PNNL 
for further information. 
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