STATCOM with Energy Storage to Smooth out Intermittent Power Output of Wind Farms Mesut Baran Sercan Teleke Subhashish Bhattacharya Alex Huang Loren Anderson (BPA) Stanley Atcitty (SNL) Imre Gyuk (DOE) **Sponsors: BPA & DOE Energy Storage Program** Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) through Sandia National Laboratories (SNL). Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. ### **Wind Farm Power** ### **Challenges:** - Variation of Power - Q support **Need to smooth both Pinj and V** # **Proposed Solution: STATCOM with BESS** **BESS** Integration STATCOM BESS -> control of both Pinj & Qinj **STATCOM BESS can smooth both Pinj and V** ### **Control of STATCOM-BESS** #### **Inner current control loop of STATCOM** #### **Decoupled control** $$P_o = \frac{3}{2} U_d i_d$$ Id controls Po $$Q_o = \frac{3}{2} U_d i_q$$ Iq controls Qo # **Decoupled control test** STATCOM-ES response to a change in Id setting # **Case Study** ### **STATCOM BESS Simulation** ### STATCOM Average model BESS equivalent circuit # **Smoothing Voltage** **Voltage Smoothing by STATCOM with 10 MWh BESS** ### **Smoothing Pout** **Challenge: BESS** State of Charge (SOC) ~ Energy Stored in BESS need to keep 30 < SOC < 100 % SOC ~ BESS voltage (non-linear) ### **Approach: Washout Filter with SOC Feedback** Proposed by K. Yoshimoto, T. Nanahara, G. Koshimizu - + SOC constraint is satisfied & Vdc is kept within limits - + Good for smoothing short-term fluctuations # **Smoothing Short-term (10 min) power variations** Smoothing provided by the washout filter based control (blue: wind farm output, green: 5 MWh, red: 10 MWh, mag.: 15 MWh). ► 10 MWh BESS provides effective smoothing ### **STATCOM BESS performance** BESS: 10 MWh Remaining energy level (SOC) of the battery (MWh). 1,500 1,400 1,350 1,350 1,250 AvgStatcom: Volt DC link voltage (kV)