

DOE Energy Storage Systems Research Program Annual Peer Review

November 2-3 Washington, DC

Flywheel-based Frequency Regulation Demonstration Projects for CEC, NYSERDA, & DOE

Imre Gyuk

Program Manager Energy Storage Research Department of Energy

Mike Gravely
Program Manager
CEC

Garth Corey

Principal Member of Technical Staff Energy Storage System Program Sandia National Laboratories

Joe Sayer
Program Manager
NYSERDA

Georgianne Peek

Project Manager Energy Infrastructure & DE Resources Sandia National Laboratories

Jim Arseneaux

Director-Flywheel Projects Beacon Power Corporation

Contents

Project Background:

- Objectives of the Demonstration Projects
- Project Teams
- System Operation
- System Hardware
- Demo Schematic
- Communication and Control Schematics
- User Interfaces

Test Results:

- Initial Acceptance Test
- System Response Time
- Slam Test
- Typical Daily Response to Signals
- Daily Performance Summary
- Monthly Performance Summary
- Reactive Power Response
- Summary of Test Results
- Status vs. Objectives

Flywheel Product Development Status

Other Applications for Flywheel Technology

Objectives of Demonstration Projects Bea

Beacon POWER

- Proof of concept on ~1/10th power scale
- Show ability to follow fast-changing frequency regulation signals
- Demonstrate anti-islanding
- Validate interconnection capability
 (NYSERDA on end of line CEC at substation)
- Demonstrate performance and economic value
- Develop and demonstrate communications with grid operators
- Demonstrate reactive power compensation (NYSERDA only)
- Collect data for product specifications
- Gain industry confidence
- Report results to the industry

CEC Project Team

NYSERDA Project Team

System Operation

Regulation Using Generator vs. Energy Storage

100 MW Generator Set at 90 MW with 5 MW Regulation

Energy Storage providing 5 MW of Regulation

- Generator varies output
 - Decreases efficiency
 - Increases emissions

- Flywheel recycles energy
 - High round trip efficiency
 - Zero emissions

Outside View of System

Inside View of System

Demo Schematic

Data Communication Topology

Control Signal Schematic (CEC)

Regulation Signal Generated from Frequency (NYSERDA)

System Graphic User Interface

Flywheel Graphical User Interface

Remote Monitoring and Control of Flywheel and System Parameters

Test Results

- Initial Acceptance Test
 - System Response Time
 - Slam Test
 - Typical Daily Response to Signals
 - Daily Performance Summary
 - Monthly Performance Summary
 - Reactive Power Response
 - Summary of Test Results
 - Status vs. Objectives

Acceptance Test Data

System Response Time

Results – Slam Test

Typical CEC Response

Beacon POWER.

(August 2, 2006)

Typical NYSERDA Response

Beacon POWER

Sept 28, 2006

Monthly Performance Summary

Date: August, 2006

(CEC - Aug 2006)

CEC Run Data Monthly Summary Sheet

Beacon Power Proprietary Information

	£.	Percent	Hours
	FREQUENCY REGULATION	86%	20.5
DAILY SUMMARY	ENERGY DEPLETED	1%	0.3
	SCHEDULED OFFLINE	12%	2.9
	UNSCHED. OFFLINE	1%	0.2
	Total	100%	24.0
	Availability = Freq Reg / 24 Hrs minus		
ON-LINE	Scheduled Offline Hrs	97.6%	
PERFORMANCE	Deviation Excluding Depleted Time	2.2%	
	Deviation Including Deplete Time	3.1%	

Monthly Performance Details

Beacon POWER

(CEC - Sept 2006)

September, 2006 SEM Performance Summary												
Date		Energy Depleted	Total Online	offline unsced	offline		Deviation w/		Setpoint	Cutout Speed RPM	Max FW's	Comments
6-Sep	22.57	0.30	22.86	0.00	1.14	2.41%	3.19%	60	17.5	17,000	7	Offline time being reviewed
7-Sep	23.64	0.30	23.94	0.06	0.00	2.32%	3.04%	60	17.5	17,000		
8-Sep	19.35	0.32	19.66	0.00	4.34	1.95%	2.87%	60				The regulation signal flatlined for several hours
9-Sep			0.00	0.00	24.00			0	17.5	17,000		The regulation signal flatlined al day
10-Sep	12.63	0.55	13.18	0.00	10.83	1.62%	4.23%	80	17.5	17,000	7	The regulation signal flatlined for several hours
11-Sep			22.63	0.61	0.76	1.74%	2.30%			17,000	7	
12-Sep	23.72	0.35	24.07	0.00	0.00	1.98%	2.91%	80	17.5	17,000	7	
13-Sep	23.43	0.58	24.01	0.00	0.00	2.20%	3.65%	80	17.5	17,000	7	
14-Sep	23.93	0.07	24.00	0.00	0.00	1.98%	2.91%	80	17.5	17,000	7	
15-Sep	23.37	0.64	24.01	0.00	0.00	1.95%	3.56%	80	17.5	17,000		
16-Sep	23.45	0.56	24.01	0.00	0.00	1.94%	3.34%	80	17.5	17,000) 7	
17-Sep	23.43	0.58	24.01	0.00	0.00	2.12%	3.55%	80	17.5	17,000	7	
18-Sep	23.44	0.56	24.00	0.00	0.00	2.43%	3.88%	80	17.5	17,000	7	
19-Sep	13.91	0.76	14.67	0.00	9.33	1.99%	5.10%	80				
20-Sep		0.68	22.52	1.48				80				
21-Sep	22.76	0.61	23.37	0.63	0.00	3.01%	4.37%	60	17.5			
22-Sep						3.92%) 6	
23-Sep												
24-Sep	23.62	0.38	24.00	0.00	0.00	3.96%	4.86%	60	17.5	17,000) 6	
25-Sep		0.40	24.00	0.00	0.00							
26-Sep	23.63	0.37	24.00	0.00	0.00	3.89%	4.81%	60				
27-Sep								60				
28-Sep												The regulation signal flatlined for several hours
29-Sep										17,000		The regulation signal flatlined al day
30-Sep												The regulation signal flatlined al day
Average for September	19.80	0.37	7 20.17	0.11								

System online 20+ hours per day. Majority (>90%) of offline time is scheduled. Deviation from signal less than 4%.

Reactive Power Response (NYSERDA)

Phasor diagram at 50KW with and without reactive power (inductive)

50KW

50KW charge, 50KVAR, PF= 0.472

Test Results Summary

- CEC system has been operating for over a year with only two scheduled system shutdowns. NYSERDA since February also with two shutdowns.
- Testing successfully characterizing flywheel response to fast-acting regulation signals
- System reliability being validated
 - Startup / quality issues encountered and addressed as they occur
 - Flywheel reliability has been excellent with two minor issues addressed on site
 - Lessons from demo systems being used to improve design and reliability of the full-power system under development for 2007
- No technical barriers to product introduction have been identified
- Final phase should focus on establishing a signal that can be used for fullpower product introduction and identify associated economic value

Performance testing nearing completion. No technical barriers identified. Lessons being incorporated in product design.

Status vs. Objectives

Objective	Status				
Proof of concept on ~1/10 th power scale	100kW demonstrated vs. 1 MW (or greater) product				
Show ability to follow fast-changing frequency regulation signals	Response time of 4 seconds demonstrated (see data)				
Demonstrate anti-islanding	Complete - using standard Beckwith relay				
Validate interconnection capability	Connected to grid with no adverse impact				
Demonstrate performance and economic value	System performance demonstrated. Economic value analysis being worked with ISOs.				
Develop and demonstrate communications with grid operators	All communications systems working				
Collect data for product specifications	Data being collected and summarized. Lessons from demo being reflected in the full-power system under development.				
Report results - gain industry confidence	Site demonstrations to key stakeholders. Data being distributed.				

Programs on schedule to meet all objectives

Beacon Flywheel Product Evolution

2001

2006

Gen 1 Telecom 2 kWh / 1 kW

Gen 2 Telecom 6 kWh / 2 kW

Gen 3 Grid 6 kWh / 15 kW

Gen 4 Grid 25 <u>kWh / 100</u> kW

2007

100kW demonstration unit

1st MW operational in commercial service

Gen 4 - 25kWh/100kW Flywheel Hardware

Rim

Housing

Gen 4 - 25kWh/100kW Flywheel

Related Applications

- Other potential applications being considered for flywheel technology
 - Mitigation of grid angular instability
 - Reactive power injection / absorption
 - Renewable ramp mitigation
 - UPS
 - Peak power
 - Micro-grid power regulation
 - Renewable energy integration