

Evaluation of the Kauai Island Utility Co- operative System for Energy Storage Potential

ESS Program Review Washington, DC November 2, 2006

Principal Investigators

Mike Yamane
Kauai Island Utility Co-op
Lihue, HI

Abbas Akhil & Aaron Murray Sandia National Laboratories Albuquerque, NM

Kauai Island Electric Grid

KIUC Port Allen Power Plant

Port Allen Power Plant

Port Allen currently has 12 generating machines capable of producing 96,500 kWs, plus a heat recovery steam generator.

Сара	acity	Name	Туре	Brand	Year in service	Efficiency	#	Individual Capacities
4.	.0	D1/2	diesel	EMD	1964	34%	2	2.0
10	0.0	S1	steam turbine	GE	1968	22%	1	10.0
8.	.2	D3/4/5	diesel	EMD	1968	34%	3	2.7
19	9.2	GT1	combustion turbine	Hitachi/GE	1973	29%	1	19.2
23	3.7	GT2	combustion turbine	John Brown/GE	1977	32%	1	23.7
	5.7	D6/7	diesel	Wartsila	1989	37%	2	7.9
15	5.7	D8/9	diesel	Wartsila	1991	37%	2	7.9

Study Objectives

Primary Objective:

 Identify the generation-side benefits of energy storage and define a storage system that best meets KIUC needs

Reduce diesel fuel consumption

Secondary Objective:
 Develop a stability model of the KIUC system based on PSCAD

Improve system stability with energy storae

Study Dates

- Sandia Energy Storage study commenced September 2005
- Analysis completed June 2006
 - Draft report completed
- Stability study commenced May 2006
 - Performed by Electric Power Systems Consulting Engineers (EPS)

Assumptions for Storage Analysis

- Storage system size: 4 MW / 16 MWh
 - Match nameplate ratings of EMD's at Port Allen
- Simplifying assumption for initial analysis
 - Storage system is completely charged/discharged daily
 - Charged ~ 0200 0600 hrs; discharged ~ 1700 2100 hrs
- Three roundtrip efficiencies considered:
 - 85%, 80% and 70%

Peak Shaving Analysis

KIUC system data used:

- 2006 hourly load forecast
- KIUC Commodities run for 2006

Total P_KEKA

Total P. OLOK

AGC SUB OLOKELE

PT_ALLEN D1_5201

PT_ALLEN D2 5202

PT ALLEN D3 5203

PT ALLEN D4 5204

PT_ALLEN D5_5205

monthly and annual summary

\$2,607 \$180.80

\$4,323 \$180,50

\$1,254

AGC SUB K COFFEE

S/Mwh

\$ Fuel

\$162.52

\$191.33

\$191.33

Fuel Useo

\$26,040

\$2,286

\$33,101

STotal S Maint

\$10,416

\$26,040

\$35,708

\$47,291

0.00

157 11.60

2.270 11.49

2,941 11.23

1,092 11.49

Typical Daily Load Profiles - 2006

Peak Shaving Analysis - Cont'd

16 Mwh of energy storage levels daily KIUC system peak - shown on following plots for both a 85% and 70% roundtrip efficiency storage system

Daily Load Profiles for January 2006 16 MWh Energy Storage – 85% Efficiency Storage

Daily Load Profiles for January 2006 16 MWh Energy Storage – 70% Efficiency Storage

Peak Shaving Analysis - Cont'd

Result shows a net *reduction* in fuel usage and maintenance costs for KIUC system

- Kapaia fuel (naptha) usage increases with corresponding increase in maintenance costs
- EMD fuel (diesel) usage and maintenance costs are reduced

Aggregate annual savings are tabulated below:

	Diesel Maintenance Cost	Diesel Fuel Cost	KPA Maintenance Cost	KPA Fuel Cost	Net Savings
85% Storage Efficiency	\$2,882,283	\$32,202,627	\$1,912,872	\$24,006,818	\$61,004,600
Without Storage	\$2,942,087	\$32,456,405	\$1,901,483	\$23,838,446	\$61,138,421
	-\$59,804	-\$253,778	11,389	168,372	-\$133,821

D 1	With	and	Without	Storage
------------	------	-----	---------	----------------

W/O Storage	503 MWh
W/ Storage	300 MWh
Net Decrease	203 MWh
% Decrease	40 %

D2 Generation - 2006

Slide 14

% Decrease	41 %
Net Decrease	759 MWh
W/ Storage	1,094 MWh
W/O Storage	1,853 MWh

D5 With and Without Storage

Storage Benefit for Peak Shaving

Generation from D1, D2 and D5 is significantly reduced

- -D1 reduced by 40%
- D2 reduced by 36%
- D5 reduced by 41%

(Shown by results of Commodities run)

Storage Benefit for Stability

- KIUC contracted EPS to conduct a stability study using PSSE software
- Study commenced in May 2006
 - -Final report recommends energy storage as an option to address stability issue
 - —Sandia Labs assisting EPS in storage requirements definition