



## Development of the Electrochemical Solution Growth (ESG) Technique for Native GaN Substrates

DOE Energy Storage & Power Electronics Research Program 30 September 2008

PI: Karen Waldrip

Advanced Power Sources R&D, Dept 2546

PM: Stan Atcitty, John Boyes

Sandia National Laboratories, Albuquerque, NM, 87185

**Sponsor: Gil Bindewald, DOE Power Electronics** 

& Energy Storage Program







#### **Outline**

- Motivation
- Existing GaN Growth Technique
  - Epitaxial Lateral Overgrowth
  - Methods for Growing Bulk GaN
- Development of the Electrochemical Solution Growth Technique
  - Electroplating GaN from Ga<sup>+3</sup> and N<sup>-3</sup>
  - Electrochemical Solution Growth (ESG)
  - Initial Results





### **Project Objective**

To develop a novel, scalable, cost-effective growth technique for producing high quality, low dislocation density bulk gallium nitride for substrates for GaN-based power electronics.

**Project Start: 5/08** 

Previous Funding: DOE's Solid-State Lighting





## **Combined Figure of Merit**

|     | K (W/cm°C) | E <sub>c</sub> (MV/cm) | 3    | μ (cm²/Vs) | Vs                  | Combined<br>Figure of<br>Merit |
|-----|------------|------------------------|------|------------|---------------------|--------------------------------|
| Si  | 1.31       | 0.3                    | 11.8 | 1350       | 1 x 10 <sup>7</sup> | 1                              |
| SiC | 4.9        | 2                      | 10   | 650        | $2 \times 10^7$     | 136                            |
| GaN | 1.3        | 3.3                    | 9    | 1200       | $2.5 \times 10^7$   | 153                            |

## **Energy gap - lattice parameter** diagram of III-nitrides







## Heterostructure Rectifiers Offer Improved Breakdown Voltages



9.7 kV for Al<sub>0.25</sub>Ga<sub>0.75</sub>N

Leakage current due to bulk defects



## GaN is Grown Heteroepitaxially on Sapphire (and Silicon Carbide) Substrates



Figure from Lada et al., J. Crystal Growth 258, 89 (2003).

- High temperature growth on the GaN nuclei produces GaN grains.
- Growth conditions can be varied to enhance the <u>pyramidal growth mode</u> or lateral coalescence. Dislocations are bent laterally on pyramidal facets.
- Dislocations are concentrated in bunches located microns apart.

- As grown GaN nucleation layers contain disordered GaN with many stacking faults.
- Once annealed, wurtzite GaN forms on top of disordered GaN NL, forming nano-sized GaN nuclei from which further high temperature GaN growth occurs.

SEM Images of 3D GaN grain growth



The threading dislocation appear in bunches which are located a few microns apart from each other.



TEM cross section

### Methods for growing bulk GaN

## **Dislocation Filtering Techniques Lateral Overgrowth HVPE** GaN layer Sapphire Substrate Liftoff process

**Polishing** 

Gall layer ?









## Desires/Requirements for a Bulk Growth Technique

- Good crystalline quality ( $\rho \le 1x10^5 \text{cm}^{-2}$ )
- High growth rate (~mm/hr): high throughput, high volume production
- Low impurity content
- Scalable
- Controllable
- Manufacturable
- Reasonably inexpensive
- Applicable to InN, GaN, AIN, and III-N alloys



### $1/2N_2 + 3e^{-} \rightarrow N^{-3}$ : The Reactive Intermediate

T. Goto and Y. Ito, "Electrochemical reduction of nitrogen in a molten chloride salt" Electrochimica Acta, Vol. 43, Nos 21-22, pp 3379-3384 (1998).

Found that nitrogen was continuously and nearly quantitatively reduced to nitride ions



## Report of nitride concentration in LiCl in literature: 12 mole %

#### Advantages of using N2 gas:

- Clean
- Inexpensive
- Control over precursor conc.
- Continuous, controlled supply





### **Initial Experimental Setup: Unseeded Growth of GaN in a Test Tube**

 $Li_3N$  or  $(Li_3N + N_2) + Ga$ , 450°C, current sweep, 2 hours





Produced numerous wurtzite GaN crystals; This crystal was ~1.25mm long x 0.8mm wide

Ga 
$$\rightarrow$$
 Ga<sup>+3</sup> + 3e<sup>-</sup>  
Ga<sup>+3</sup> + N<sup>-3</sup>  $\rightarrow$  GaN  
3Li<sup>+</sup> + 3e<sup>-</sup>  $\rightarrow$  3 Li



## GaN ESG Produces Photoluminescent GaN Crystallites









Mary Crawford, SNL



## New Growth Technique: Electrochemical Solution Growth (ESG)



Use salt flow to deliver precursors Increase growth rate through flux of reactants (increase spin rate)

- Half-reaction 1:
  - $1/2N_2 + 3e^- \rightarrow N^{-3}$
  - N<sup>-3</sup> concentrations ~12 mole %
- Half-reaction 2:
  - Ga  $\rightarrow$  Ga<sup>+3</sup> + 3e<sup>-1</sup>
  - Ga<sup>+3</sup> equilibrium concentrations
     ~1 mole %

Precursors can be replenished as they are consumed Advantage: Continuous, isothermal or steady-state growth



# Example of Nitrogen Gas Reduction Cyclic Voltammograms





### **SEM** of RD-ESG Growth Run #1



- SIMS revealed the layer to be a graphitic carbon layer, with Ga, N, and GaN clusters
  - GaN content was about 10%
  - Profile was consistent with an increasing concentration
- Problem with salt purity from supplier
  - Working it out with supplier
  - Developing in-house purification technique for reagent grade salt





# Industrial Partner (GNOEM) Hardware Development







## First GNOEM RD-ESG Experiment







- Hardware failure
   – susceptor sheared, not sure when
- Black line on sample surface delineated a higher, specular region and lower, roughened area
- Defect selective etching observed (several microns/hr)
- Highly encouraging for crystal quality
  - Must identify the conditions under which this takes place
- Polished cross sections of control and experiment sample consistently measure about  $1\mu m$  thicker for experiment







## Growth Rate vs. Rotation Speed and Concentration







### **Summary: Path For Development**

- Demonstrate that chemistry is viable
  - Kinetics and thermodynamics are favorable in this setup
- Check for dissolution and precipitation approach
- Develop N<sub>2</sub> electrochemical reduction methods
- Develop initial fluid dynamics schemes
- Deposit GaN on a seed crystal
  - Improve crystal quality
  - Optimize growth rate





### **Acknowledgments**

- Jeff Tsao
- Tom Kerley
- Frank Delnick
- David Ingersoll
- Bill Averill
- Bob Biefeld
- Mike Coltrin
- Ryan Egidi
- National Energy Technology Laboratory/Energy Efficiency and Renewable Energy Office of Solid-State Lighting

- Paul Butler
- Tom Wunsch
- Dan Doughty
- Randy Creighton
- Christine White
- Dan Koleske
- Dave F. Smith
- George Antypas
- Mary Crawford
- Bertha Montoya

