

Device, Converter and Controller Development for 10 MVA ETO Based STATCOM

Principal Investigator: Prof Alex Q. Huang FREEDOM Systems Center North Carolina State University, Raleigh

SNL Project Manager: Dr. Stan Atcitty DOE Manager: Dr. Imre Gyuk

This project is co-sponsored by Bonneville Power Administration (BPA)

- Future Renewable Electric Energy Delivery and Management (FREEDM) Systems Center is an NSF Engineering Research Center
- Faculty from the following schools participate in the Center research

www.freedm.ncsu.edu

Presentation Outline

- 10 MVA ETO based STATCOM overview
- STATCOM converter topology
- Status of the devices and converter
- Controller architecture and test
- Summary
- Future work

Project Objective: Windfarm Integration

Power rating	10 MVA		
Transmission Line voltage	69 kV		
STATCOM voltage	4.16 kV		
Phase current	1.39 kA		
Transformer	69kV/4.16kV		
Converter	Cascade multilevel converter		
Device	Gen-4 ETO (4.5kV/4kA)		

Other Project Objectives

To demonstrate the following major benefits of ETO technology

Low Cost

- Low-cost mega-watt rated power semiconductor device (ETO)
- Modular converter design (H-Bridge Building Block)
- Highly efficient air-cooled system

High Reliability

- Large turn-off safe-operation area (SOA) of power device
- High performance cooling system
- Multi-layer protection

Scalability and Extensionality

- Modular H-Bridge Building Block (HBBB)
- Scalable control system

Converter Topology for 10 MVA ETO Based STATCOM

Five-level cascade multilevel converter based on six modular H-Bridge Building Block (HBBB)

Modular H-Bridge Building Block (HBBB)

DC capacitor	2170 kV
DC capacitors value	12 mF
Device forward voltage	3.3 V
Diode forward voltage	3.1 V
Clamp L	5 μΗ
Clamp R	1 Ω
Clamp C	12 µF

Topology of the modular HBBB

Gen-4 ETO Power Switch

- ✓ Switching Device Used in the HBBB is the **Emitter Turn-Off Thyristor**
- ✓ Hockey Puck Shaped, Press-pack device
- ✓ Self Powered Gate Drive
- ✓ Built-in Current, Voltage & Temperature Sensors
- ✓ Self-Protection capability
- ✓ Full Optical Control and Intelligent Feedback
- ✓ Clamping force required for correct operation

HBBB Losses@10 MVA

		P _{conducti}		
	P _{switching}	on	TOTAL	
	(kW)	(kW)	(kW)	
S1	1099.5	1076	2175.5	
S2	1099.5	1076	2175.5	
S3	1099.5	1076	2175.5	
S4	1099.5	1076	2175.5	
D1	82.95	1049	1131.95	
D2	82.95	1049	1131.95	
D3	82.95	1049	1131.95	
D4	©AP/	A CHT/	/<u>F</u>13 1.95	

		P _{conductio}	
	P _{switching}	n	TOTAL
	(kW)	(kW)	(kW)
S1	740.31	1062	1802.31
S2	740.31	1062	1802.31
S3	740.31	1062	1802.31
S4	740.31	1062	1802.31
D1	116.07	1024	1140.07
D2	116.07	1024	1140.07
D3	116.07	1024	1140.07
D4	INDUC	TIVE	1140.07

LOSS SUMMARY of CLAMP CIRCUIT

	5.32 kW (resistor loss + diode loss)	Resistor Loss	4.85 kW			
Clamp Circuit Loss		Diode Total Loss : 472W	Forward recovery	196 W		
			Conduction	61W		
			Recovery	216 W		
DC Capacitor (ESR Loss)	382W					
Di/dt Inductor	Copper Loss		663.63 W (CAP)			
	(Resistance = $1.7 \text{ m}\Omega$)		486.58 W (IND)			
Maximum Clamp Capacitor Voltage @4000A	3900 + 200 (ripple) = 4100V					
Reset time @ 2000A	16μs					

THERMAL MANAGEMENT OPTIONS

> DESIGN CONSIDERATIONS:

- √ Heat-Load is large and total HBBB loss = 20 kW
- √ Largely Press-pack Devices are used in HBBB
- ✓ Dog-House Resistors are used for the Clamp Resistor
- ✓ Snubber Inductor has NO EXTERNAL FINS
- ✓ SYSTEM HAS TO BE AIR-COOLED

THERMAL MANAGEMENT OPTIONS

> Press-Pack Devices:

✓ Heat-Pipes are a good option for the ETO and Diode.

ETO based Half-Bridge

MECHANICAL DESIGN: HBBB Housing

AIR-FLOW DESIGN

STATCOM Controller Architecture

Controller Experimental Waveforms

Output voltages of HBBBs and current in capacitive mode in the C phase

Output voltage and current transit response during the transition from capacitive mode to inductive mode in the C phase

Output voltages of HBBBs and current in inductive mode in the C phase

Controller setup in the laboratory (Six IGBT modules are built as six HBBBS)

Controller Hardware in the Loop Test With RTDS

RTDS (Real Time Digital Simulation) in FSU

Central controller

Interface boards

Local controller

Human interface

Project Summary

- 10 MVA STATCOM system power stage hardware are developed and ready
 - 1) ETOs/diodes, Heatpipes, DC capacitors, clamp circuit for six HBBBs are ready
 - 2) Bus bar and mechanical design are finished.
 - 3) Bus bar manufacturing and assembly are needed to finish the 10 MVA system
- STATCOM controller system is developed and is being tested in RTDS system supported
- Successful demonstration of ETO STATCOM will allow us to move to the next phase demonstration, an ETO Energy Storage System

THANK YOU