2012 Smart Grid Program Peer Review Meeting

DOE RDSI Maui Smart Grid Project

James "Jay" Griffin, PhD

University of Hawai'i at Manoa

June 7, 2012

DOE RDSI Maui Smart Grid Project

Managing Distribution Energy Resources (DER) for Transmission- and Distribution-Level Benefits

OBJECTIVES			DOE RDSI Demonstration Site	
D, T	Reduce distribution circuit loading and transmission congestion		NEDO Project	
D	D Help consumers better manage energy use		1517	
D	Improve service quality		• Wailea	
D, T	Use more as-available renewable energy resources (wind and solar PV)		200 MW island system	
D	Demonstrate flex architecture com	ible, expandable, batible with legacy systems	 72 MW wind 15+ MW solar PV 	
			TECHNICAL SCOPE	
_	Life-cycle	Funding (\$k)	 Advanced Metering Infrastructure (AMI) load research power quality monitoring 	
	FY09 – FY13 Project Budget		Home Area Network (HAN)	
	DOE: Cost Share:	\$ 6,995 \$ 7,383	 customer energy use feedback demand response 	
	cost share.	Ŷ 7,505	Battery Energy Storage System (BESS) - 1 MW, 1 MWh	
	Total:	\$ 14,383	 manage peak demand integrate renewable energy 	
Ŀ			Distribution Management System (DMS)	
			 Volt-VAR control outage mgmt. distribution monitoring (V, I) manage DER 	

Needs and Project Targets

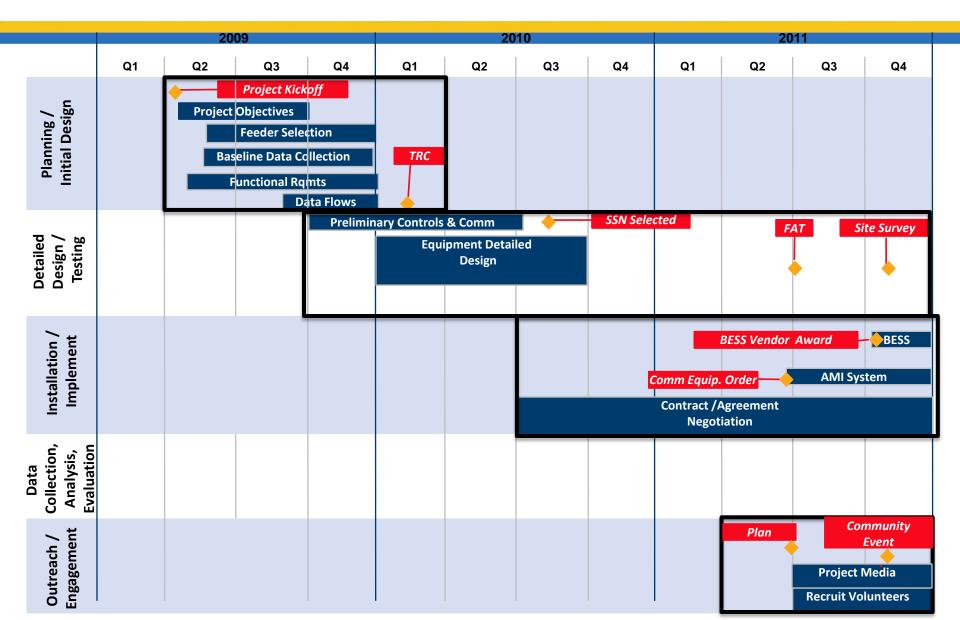
Project's challenge is to determine whether the capabilities of the Smart Grid can improve utility operations and customer service, and if so, at what cost and benefit.

Objective	Key Utility Needs	Smart Grid Project Targets
Integrate	Grid stability with variable resources	DER as substitute for conventional reserves
Renewables	Limited visibility of distributed RE	Use AMI to monitor distributed PV and voltages
	Increasing curtailment	Use BESS and AMI to capture curtailed energy
Inform	Monthly bill primary source of information	New displays provide near real time data
Consumer Energy Use	New rates being implemented (tiered and TOU)	Help inform consumers on pricing information
Improve Service	Limited outage and voltage violation detection in distribution system	Use AMI to detect outages and improve response
Quality		Use AMI to detect voltage violations
		DMS volt-Var control and load flow to reduce losses
Reduce	Peaking units very expensive on Maui	BESS and DR provide new resources
Peak Load by 15%	Limited load research data	AMI/HAN data measure appliance load profiles and help develop DR strategies
	Coordinating use of DER	DMS helps manage DER with other system resources

Technical Approach

MAIN PROJECT TASKS

Planning/	Detailed Design /	Implementation /	Data Collection,
Initial Design	Testing	Installation	Analysis, Evaluation
 Set project objectives Select Substation / Feeder Obtain Baseline Data 	 Functional Requirements System Architecture & Data Flows Vendor Selection Technical Review Factory Acceptance Test 	 Contracting/agreements Equipment Installation AMI, HAN, BESS, DMS System integration 	 Baseline Data Metrics / data collection DOE Reporting Equipment (decommissioning/ extension)


	<u>Volunteer/Community</u> <u>Outreach</u>	MECO Employees	DOE & other Stakeholders
Develop and approve Outreach Plan	 Letters to local residents Community meetings Local media stories Project website Project newsletter Recruit and enroll volunteers Ongoing outreach & support 	 Employee training Inform staff on project and goals 	 Press releases/ media on project DOE Reporting Presentations to Hawaii stakeholders (e.g., PUC) Spoke at Asia-Pacific Economic Cooperation (APEC) Summit

Technical Approach


CHALLENGES AND INNOVATIVE ASPECTS

Technical Challenge	Approach to Overcome Challenge
System integration/ Managing technology risk	 Clearly define interfaces, areas of responsibility Utilize products with prior commercial experience Incremental approach, specifically with controls and automation Select products most compatible with legacy systems System manages distribution resources similarly to how utility manages generation sources (e.g. unified displays, model structure for DER)
Cyber-Security (customer, MECO)	 Compatibility with existing best practices, policies, procedures Vendors with proven record of implementing utility scale metering / smart grid projects
Public Outreach/Stakehold er Engagement	 User-centric approach to outreach Comprehensive customer outreach and education; solicit customer input/feedback Metrics and benefits plan to quantify true value to customer

Technical Accomplishments (FY 2009 - 2011)

Technical Accomplishments (FY 2012 - 2013)

Technical Accomplishments

Key Lessons Learned

- Clearly define functional requirements and technical specifications
- Develop flexible architecture that is expandable in functionality

 can include functions not yet developed
- Engage all project stakeholders (internal and external) from the beginning
- Outreach and education critical to project success
 - User-centric approach
 - MECO employees are ambassadors to the community and ALL must be knowledgeable about the project (not just technical aspects)
 - Smart Grid functions deliver tangible benefits stakeholders
 - Enlist participation by local stakeholders (Economic Development Board, County Government, environmental groups, Maui Community College)

Related projects leveraging DOE RDSI Maui Smart Grid Project

- NEDO \$37M additional Japanese investment in Smart Grid
 - will be testing Hitachi-supplied equipment in project footprint
- DOE SEGIS Smart Inverter Project SSN and Fronius key technology partners

Significance and Impact

Item	Current Practice	Broader Applicability of Smart Grid Project
High penetrations of as-available renewables	Limited distribution visibility Manage variability with conventional generation	 Improve distribution monitoring DER dispatch to manage renewables Compatible with constraints on system operator TRC review to ensure applicability to mainland
Systems Integration	Limited mgmt. of distribution resources	 New & legacy equipment New & legacy functions and applications Multi-vendor solution
Outreach and Stakeholder Engagement	Stakeholder uncertainty about smart grid	 Quantifiable stakeholder benefits (customer, MECO) Utility / customer partnership Customer feedback mechanisms Communicate manageable and actionable information to customer

Interactions & Collaborations

Hawai'i Natural Energy Institute (HNEI) of University of Hawaii Project Manager & Principal Investigator Maui Electric Company (MECO) Host utility; Project design, system operator interface, SCADA integration; Co-funding with substation/feeder construction, BESS Hawaiian Electric Company (HECO) Co-host utility; Power systems engineering, cyber security Maui Economic Development Board (MEDB) Education and outreach to community Maui County Community outreach; AMI on county pumping loads University of Hawaii - Maui College Energy audits and training; participant support SRA International (SRA/Sentech) Requirements definition; system integration; test protocol Silver Spring Networks (SSN) Vendor for AMI, HAN, DR platform; Customer outreach support Alstom Vendor for DMS: SCADA integration support **NEDO/Hitachi** Coordinate with Japan-US Island Grid Project

Contact Information

James "Jay" Griffin, PhD Hawai'i Natural Energy Institute University of Hawai'i at Manoa 1680 East-West Rd, Post 109 Honolulu, HI 96822 808-956-0495 griffin4@hawaii.edu

www.mauismartgrid.com