2012 Smart Grid Program Peer Review Meeting

Smart Grid Technology Test Bed Scott Backhaus Los Alamos National Laboratory

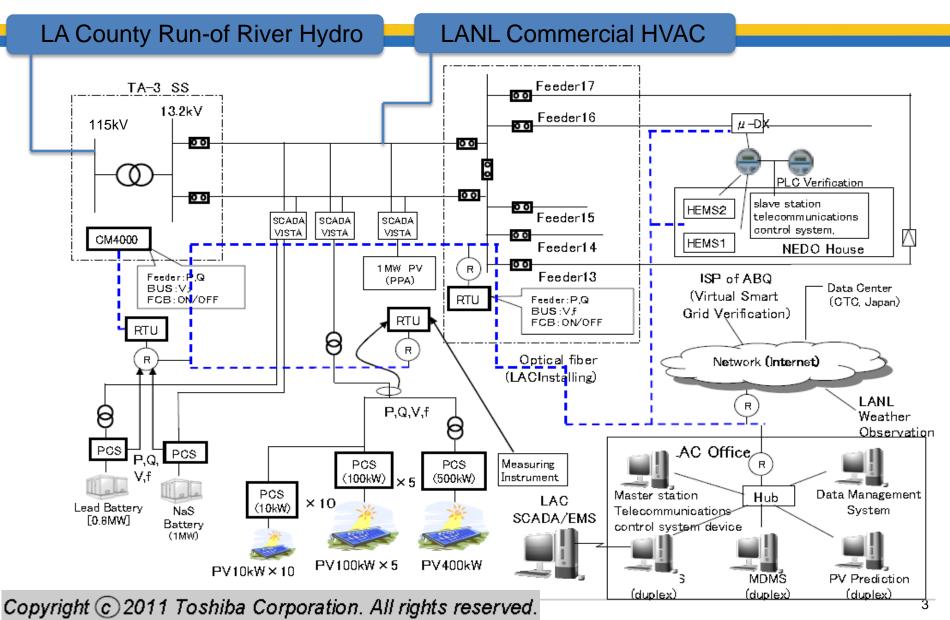
June 8, 2012

Smart Grid Technology Test Bed

Objectives

- Create and demonstrate a replicable DER control system—focus on small electrical utilities and co-operatives
 - Integration of renewables
 - Planning of DER portfolios
 - Assess economic DER value
- Development/characterization of DER
 - Commercial HVAC
 - Run-of-river hydro

Life-cycle Funding (\$K)


FY10-11	FY12	FY13 Request	FY14 Request
350	300	400	400

Technical Scope

- Model predictive control (MPC) of diverse portfolios of distributed resources
- Optimal/controllable modification of the statistics of PV variability
- Data-driven models for control of HVAC in large commercial buildings
- Models/control of run-of-river hydro—river impacts

Smart Grid Technology Test Bed-Overview

Needs and Project Targets

Integration of DER/DR/ES

• Design and analysis of control algorithms that <u>shape the statistics of PV</u> <u>variability, i.e. the net interface flow to the transmission system</u>

- Uncertain local renewable energy forecasts
- Simultaneous control of a diverse set of DER/DR/ES
 - Energy storage systems—NaS and lead-acid batteries
 - Commercial building HVAC load
 - Locally-controlled generation—run-of-river hydro
 - Discrete loads
- Control of complex loads—Large commercial HVAC
 - Models too large/complex for use in MPC or other controls

Smart Grid business cases—will be engaging Tri-State G&T for guidance

- Assess the economic value of DER/DR/ES—Different time scales for control
- DER portfolio design
 - Optimal design of portfolio to meet control objectives
 - Minimal/optimal sizing of storage

Technical Approach - 1

Model Predictive Control (MPC)

- A diverse portfolio of DER will have
 - Different dynamics—spanning time scales
 - Different end use requirements—different constraints
 - Constraints over time—ES state-of-charge constraints
- MPC—a control technique that unifies a DER portfolio
 - Spans time scales—many dynamics
 - Easily adjusts to many different end-use constraints—future constraints
- MPC—incorporates uncertain forecasts of renewable generation
 - Allows for recourse as forecasts are updated
- MPC—Adapts to different control objectives
 - Allows for shaping of net transmission interface flows
 - Shaping of residual renewable fluctuation statistics
- Operations-Based Planning of DER portfolios (Tri-State G&T)

Technical Approach - 2

Data-driven models for large commercial HVAC DR

- Large-building HVAC are complex control systems
 - Coupled thermodynamic systems—chillers, fans, conditioned spaces, local controllers
 - Hundreds of thermostats/VAV control points
 - Combination of centralized and distributed control
- First-principles dynamical models—too complex for control

<u>Bypass complexity—develop data-driven dynamical models via system</u>
<u>identification</u>

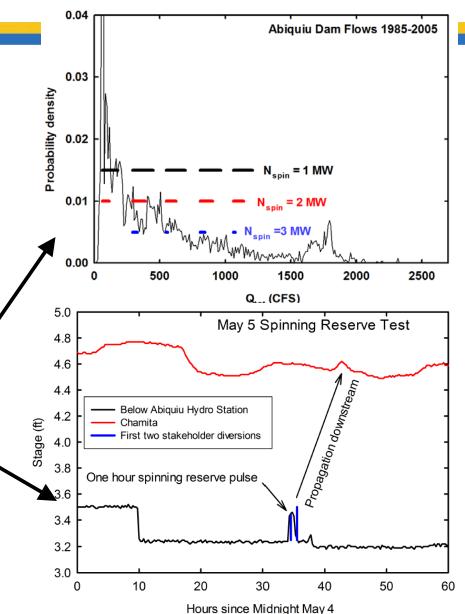
- Experimentally create "look-up tables" for building dynamics
- Build the look-up tables into MPC formulations

Run-of-river hydro

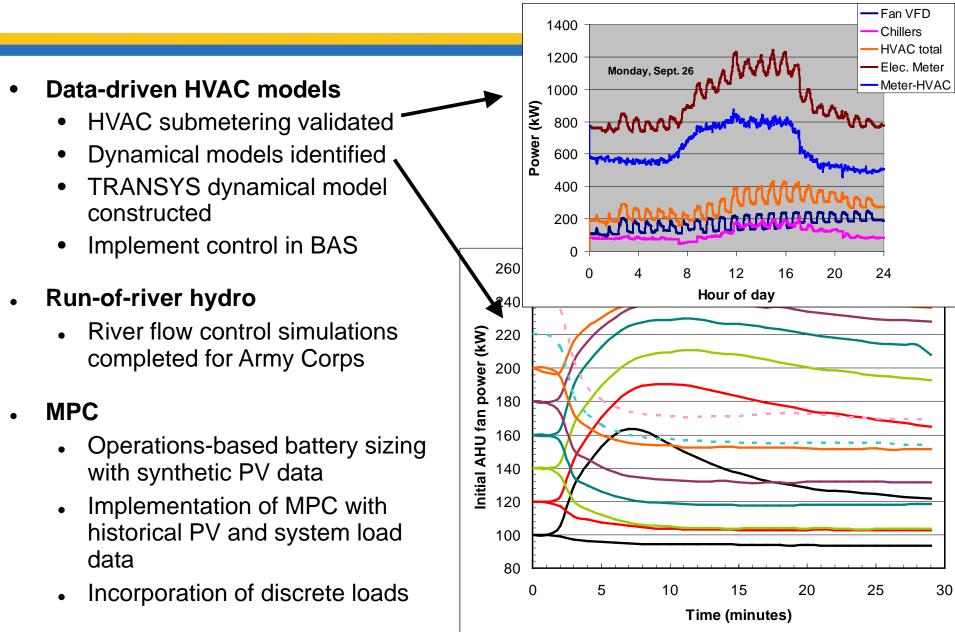
- Utilizing MPC to simulate effects of PV mitigation on the river flows
- Working with Army Corps of Engineers to develop a standardized process

Technical Accomplishments – (FY10)-FY11

Data-driven HVAC models


- BAS of 300,000 ft² office building reprogrammed to enable global set point control of all 500 thermostats
- HVAC submetering installed
- System identification experiments under wide range of HVAC loadings

Run-of-river hydro


- Model of dam operations built into MPC
- Determined impact of MPC-based PV mitigation on daily river flows
- Carried out tests of hydro control to determine downstream effects

MPC

Controller for coded for continuous resources (batteries, hydro)

Technical Accomplishments – FY12

Technical Accomplishments – Out years

10⁻¹

• Data-driven HVAC models

- Integrate data-driven model into MPC
- On-line control demonstration with smart grid testbed
- Run-of-river hydro
 - Complete impact study with Army Corps of Engineers
 - On-line control demonstration with smart grid test bed

1-MW PV Installed 500 kW, 250 kW-hr 500 kW, 250 kW-hr Probability density 250 kW, 250 kW-h 500 kW, 125 kW-hr 125 kW, 250 kW-hr 500 kW, 62 kW-hr 10⁻² 10-3 -0.50 0.00 0.25 0.50 -0.25 Fractional fluctuation magnitude (P_{fluc}/P_{installed})

• MPC

- Operations-based planning/design of DER portfolios with historical and smart grid testbed data
- Collaborate with Tri-State Generation and Transmission to determine economic value of DER portfolios

Significance and Impact

• Data-driven commercial HVAC models—Enables control

- Reduces complexity of models for control purposes
- Adaptable to control schemes other than MPC
- MPC
 - Enables combined control of continuous and discrete DER/DR/ES
 - Easily adaptable to other types DER (e.g. irrigation pumping). Only needs:
 - Dynamical model DER
 - End use constraints
 - Probabilistic/Statistical targets for interface flows easily incorporated

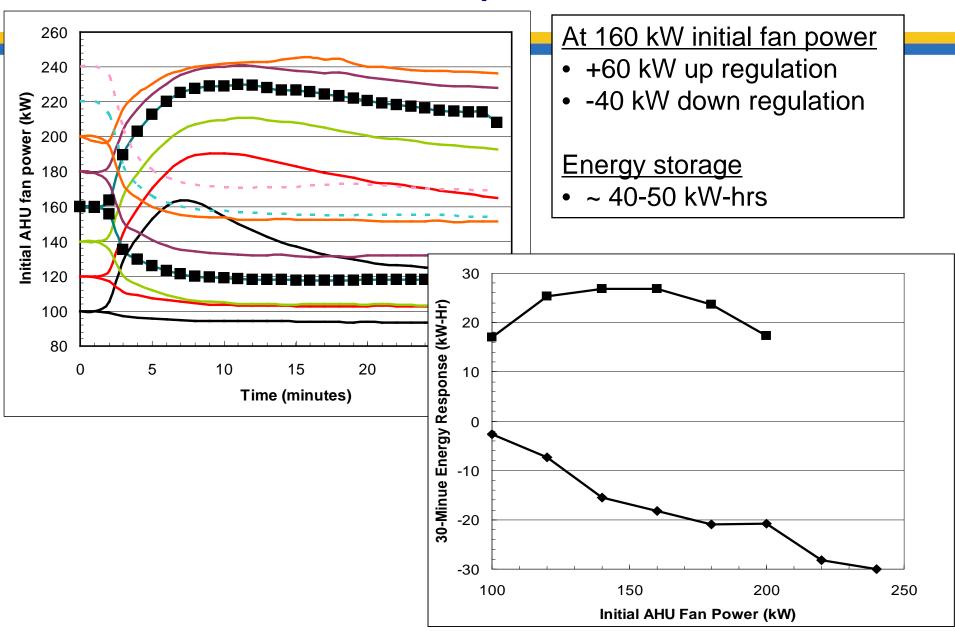
Run-of-river hydro

- Building a translatable methodology for engaging the Army Corps of Engineers on renewable integration
- MPC models for generation control translate to other utility-owned generation

Interactions & Collaborations

- New Energy and Industry Technology Development Organization-Japan
 - PV and battery developer
 - Control system
- Los Alamos County Public Utilities
 - Grid owner
 - Hydro station owner
- LANL Utilities and Infrastructure
 - Owner of commercial HVAC system and BAS
- Army Corps of Engineers
 - Control of "run-of-river" water flows
- Trane (contractor)
 - Assistance the HVAC/BAS reprogramming
- •Tri-State Generation and Transmission
 - Assessment of economic value of controlled DER

Contact Information


Scott Backhaus

LANL MS K764 Los Alamos, NM 87545

505-667-7545

backhaus@lanl.gov

Back-up Slides

