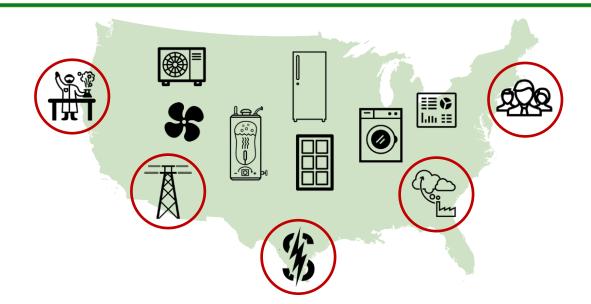
U.S. DEPARTMENT OF ENERGY

Lawrence Berkeley National Laboratory | National Renewable Energy Laboratory Aven Satre-Meloy, Research Scientist | Chioke Harris, Senior Research Engineer <u>asatremeloy@lbl.gov</u> | <u>chioke.harris@nrel.gov</u> WBS 3.5.5.20 (LBNL) | WBS 3.5.55 (NREL)

Project Summary


Objective and outcome

Scout is building stock modeling software used to estimate near- and long-term impacts of energy efficiency, flexibility, and electrification technology deployment on U.S. national and regional building energy use, CO_2 emissions, and operating costs.

Scout helps EERE and BTO set program-wide goals and explore key deployment levers at a granular level and supports internal and external stakeholder engagement.

Team and Partners

LBNL	NREL
Aven Satre-Meloy, Co-PI Jared Langevin, Co-PI Handi Chandra Putra	Chioke Harris, Co-PI Andrew Speake Peter DeWitt

Stats

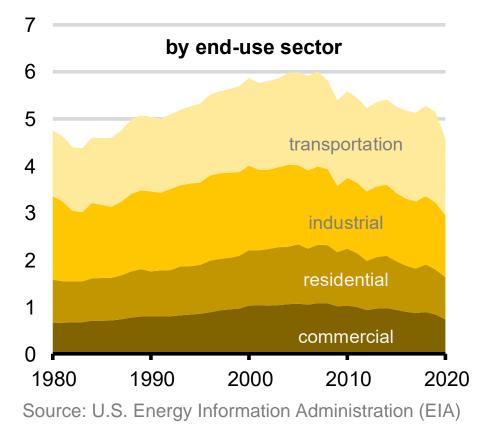
Performance Period: FY22–FY24 DOE budget: \$750,000 (FY23 enacted) | Cost Share: \$0

Milestone 1

New minor Scout version released on GitHub

Milestone 2

 Updated Scout core Energy Conservation Measure (ECM) set and analysis results

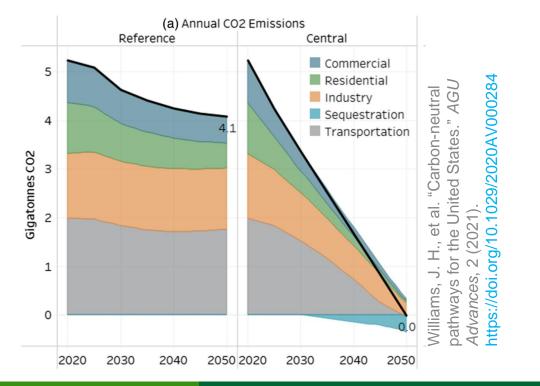

Milestone 3

New major Scout version released on GitHub

Problem Statement

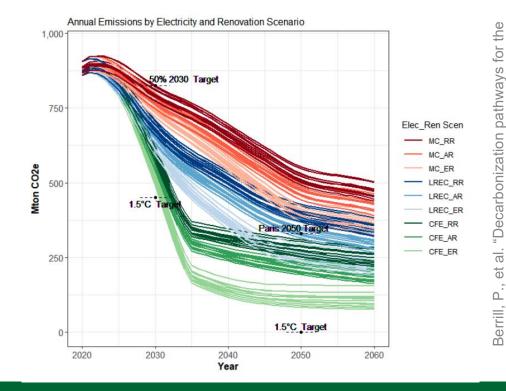
Buildings are a top source of electricity and energy use as well as energy-related CO_2 emissions in the U.S.

U.S. energy-related carbon dioxide emissions (1980–2020) billion metric tons



Scout supports BTO and its analysis stakeholders in conducting rapid assessments of potential building sector energy and emissions impacts through 2050. Scout's ability to represent a wide variety of existing and emerging building technologies provides useful quantitative evidence to highlight the role of building technologies in achieving economy-wide decarbonization.

Existing modeling and scenario tools tend to represent building technologies and adoption drivers with a coarse degree of detail


Economy-wide decarbonization

Limited representation of building end uses and technologies

Buildings sector-specific decarbonization

Limited sectoral representation and coarse adoption assumptions

tates.

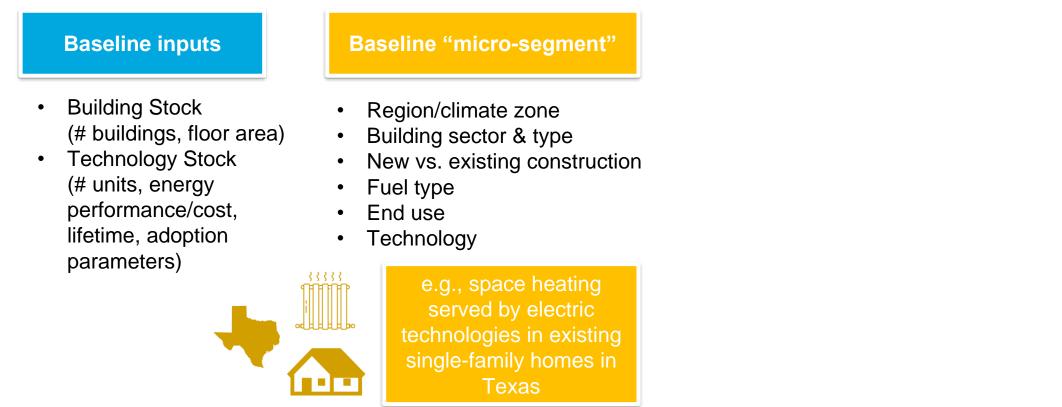
Φ

sector hange

σ

esidenti *Climate*

00

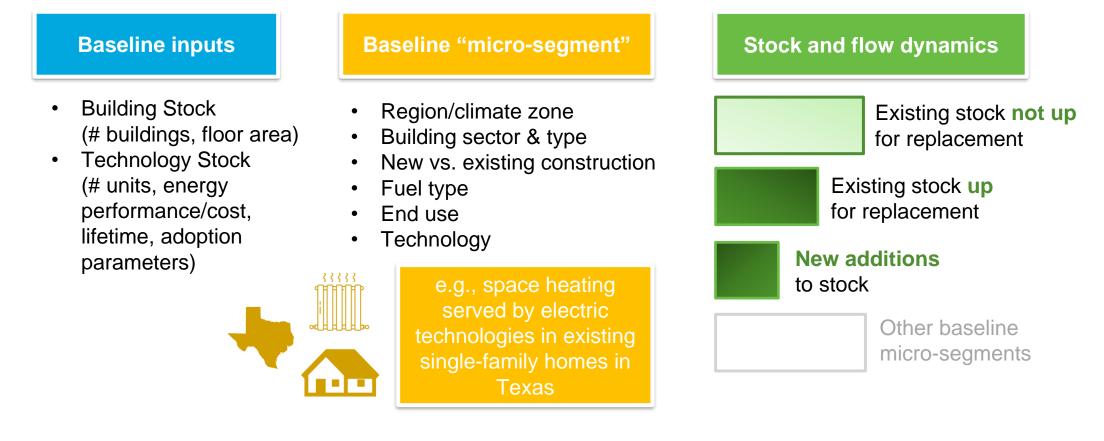

Scout can represent detailed portfolios of building technologies combined with sophisticated technology adoption dynamics

Baseline inputs

- Building Stock (# buildings, floor area)
- Technology Stock (# units, energy performance/cost, lifetime, adoption parameters)

Scout can represent detailed portfolios of building technologies combined with sophisticated technology adoption dynamics

Guidehouse


Primary data sources:

ENERGY

ffice of ENERGY EFFICIENCY & RENEWABLE ENERGY eia

BERKELEY LAB

Scout can represent detailed portfolios of building technologies combined with sophisticated technology adoption dynamics

Guidehouse

Primary data sources:

ENERGY

office of ENERGY EFFICIENCY & RENEWABLE ENERGY eia

BERKELEY LAB

Scout can represent detailed portfolios of building technologies combined with sophisticated technology adoption dynamics

Scout Energy Conservation Measure (ECM)

- Applicable baseline micro-segment
- Cost, performance, lifetime
- Market entry year

e.g., ESTAR v6.1 Res. Air-source Heat Pump

Typical Capacity (kBtu/h)	36
SEER (Cooling)	16
HSPF (Heating)	9.2
Average Life (y)	15.3
Total Installed Cost (2022\$)	6,940

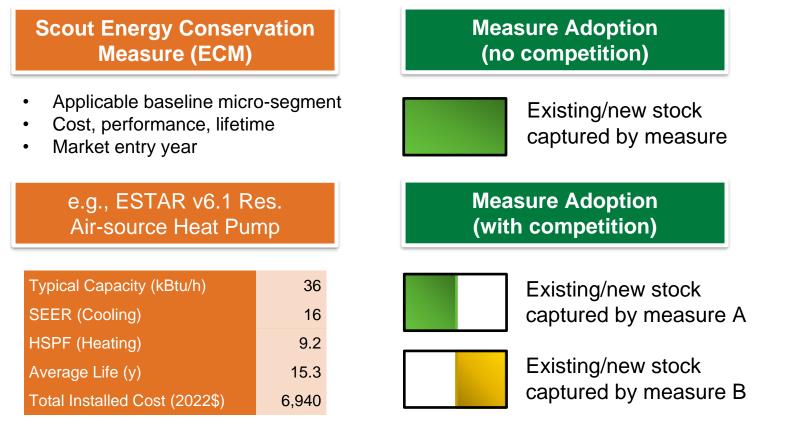
Scout can represent detailed portfolios of building technologies combined with sophisticated technology adoption dynamics

Scout Energy Conservation Measure (ECM)

- Applicable baseline micro-segment
- Cost, performance, lifetime
- Market entry year

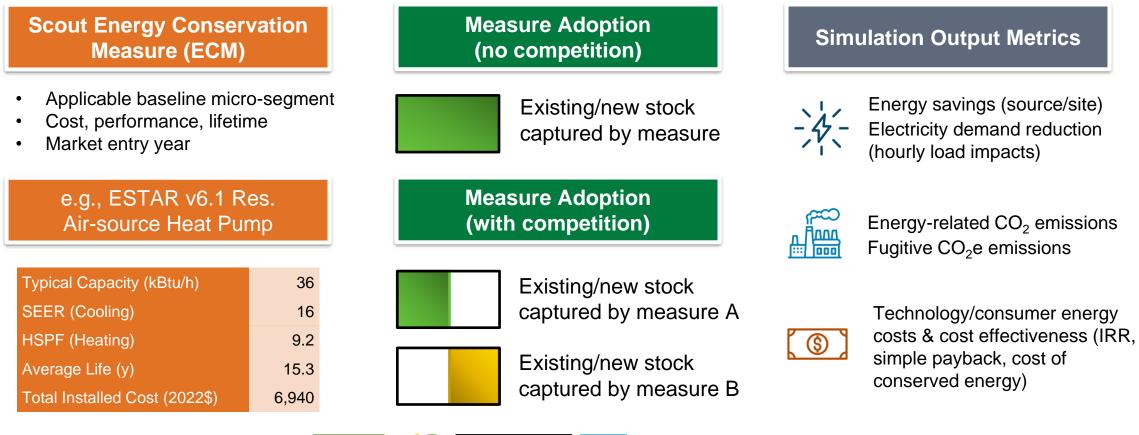
e.g., ESTAR v6.1 Res. Air-source Heat Pump

Typical Capacity (kBtu/h)	36
SEER (Cooling)	16
HSPF (Heating)	9.2
Average Life (y)	15.3
Total Installed Cost (2022\$)	6,940


Measure Adoption (no competition)

Existing/new stock captured by measure

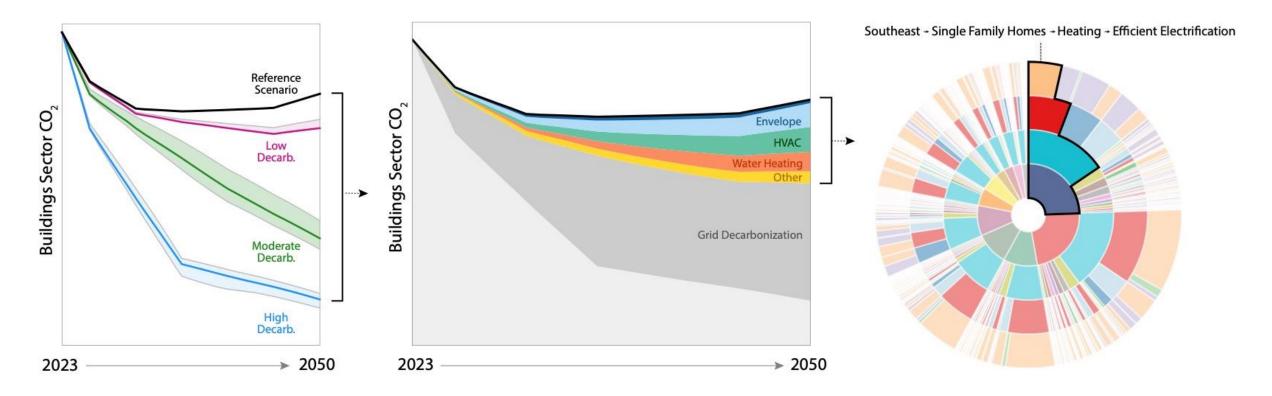
Scout can represent detailed portfolios of building technologies combined with sophisticated technology adoption dynamics


Primary data sources:

Guidehouse

Scout can represent detailed portfolios of building technologies combined with sophisticated technology adoption dynamics

Primary data sources:


Scout can represent detailed portfolios of building technologies combined with sophisticated technology adoption dynamics

Building Measure* Features Building and Equipment Stock Dynamics Efficient electrification for **Elevate minimum performance** heating/WH/cooking Introduce breakthrough technologies Energy efficiency for electric and nonelectric end uses Accelerate electrification Demand flexibility measures with shed/shift capabilities Accelerate retrofit decisions

*We currently assess 170 building measures and 37 measure packages, available <u>here</u>. Our measure set is regularly updated.

Alignment and Impact

Scout's analysis capabilities help EERE and BTO set program-wide goals and explore key deployment levers at a granular level

Preprint available: Langevin et al, "The Role of Buildings in U.S. Energy System Decarbonization by Mid-Century," https://dx.doi.org/10.2139/ssrn.4253001

Alignment and Impact

Scout is open-source software with supporting user guides and documentation that enables stakeholders to conduct their own analyses

We define success as the wide use of Scout capabilities and datasets across policy and research domains to improve the understanding of building decarbonization pathways as well as key technology impacts and deployment levers.

Scout software available at: <u>https://github.com/trynthink/scout</u> Quick start guides available at: <u>https://scout-bto.readthedocs.io/en/latest/</u>

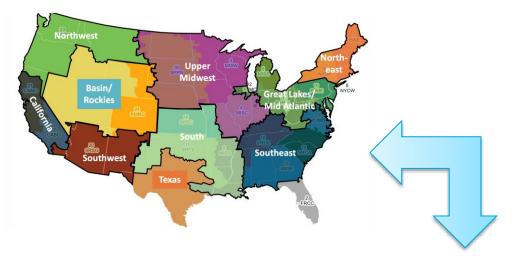
Scout web application available at: https://scout.energy.gov/

Scout benchmark scenarios for U.S. building energy use and CO_2 emissions to 2050 available at:

https://zenodo.org/record/6577017

Technical challenges and barriers to Scout development relate primarily to data and modeling gaps that we aim to address over time

Key modeling gaps


Technology adoption scenarios

Geographic resolution

Demand flexibility modeling

Technology costs

Endogenous electrification modeling

Scout's AOP specifies key areas of approach refinement and development to address key gaps and analysis barriers

1. Analysis capabilities and workflow

2. Energy Conservation Measure (ECM) updating and maintenance

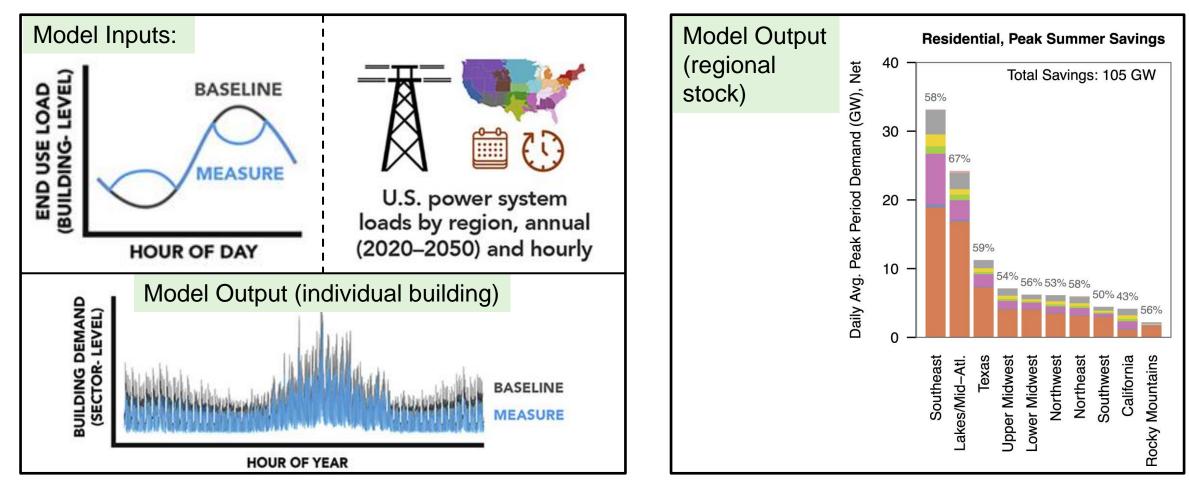
3. Baseline data updating and maintenance

- 4. Web application capabilities and maintenance
- 5. Documentation, support, and communication

Scout's AOP specifies key areas of approach refinement and development to address key gaps and analysis barriers

1. Analysis capabilities and workflow

2. Energy Conservation Measure (ECM) updating and maintenance



3. Baseline data updating and maintenance

- 4. Web application capabilities and maintenance
- 5. Documentation, support, and communication

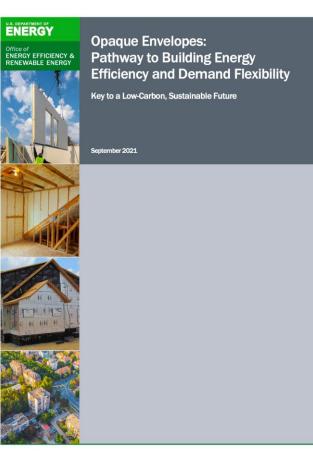
Key technical capability advancement: detailed representation of demand flexibility measures to assess electricity load impacts

Langevin et al. (2021), "US building energy efficiency and flexibility as a grid resource," https://doi.org/10.1016/j.joule.2021.06.002

Scout's accomplishments include high-impact publications, support for EERE goals development, and stakeholder engagement

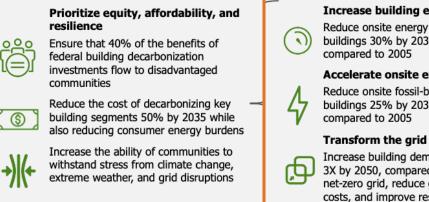
Publication Title Citation and Link		Journal
Assessing the Potential to Reduce U.S. Building CO2 Emissions 80% by 2050	Langevin et al. (2019): <u>10.1016/j.joule.2019.07.013</u>	Joule
Assessing the time-sensitive impacts of energy efficiency and flexibility in the US building sector	Satre-Meloy and Langevin (2019): 10.1088/1748-9326/ab512e	ERVIRONMENTAL RESEARCH LETTERS
US building energy efficiency and flexibility as a grid resource	Langevin et al. (2021): <u>10.1016/j.joule.2021.06.002</u>	Joule
A global comparison of building decarbonization scenarios by 2050 towards 1.5–2 °C targets	Camarasa et al. (2022): https://doi.org/10.1038/s41467-022-29890-5	nature
The Role of Buildings in U.S. Energy System Decarbonization by Mid-Century	Langevin et al. (Under Review): <u>10.2139/ssrn.4253001</u>	One Earth

Scout's accomplishments include high-impact publications, support for EERE goals development, and stakeholder engagement


Office of RENERGY EFFICIENCY & RENEWABLE ENERGY Management

> Research and Development Opportunities Report for Emerging Technologies

February 2020


Scout is currently used to estimate technology installed cost and performance targets, as well as potential energy, CO₂ emissions, and operational cost savings, for emerging technologies covered in BTO's Research and Development Opportunities (RDO) Reports

Scout's accomplishments include high-impact publications, support for EERE goals development, and stakeholder engagement

A vision for a net-zero U.S. building sector by 2050

Support rapid decarbonization of the U.S. building stock in line with economy-wide net-zero emissions by 2050 while centering equity and benefits to communities

Increase building energy efficiency Reduce onsite energy use intensity in buildings 30% by 2035 and 45% by 2050,

Accelerate onsite emissions reductions

Reduce onsite fossil-based CO₂ emissions in buildings 25% by 2035 and 75% by 2050,

Transform the grid edge at buildings

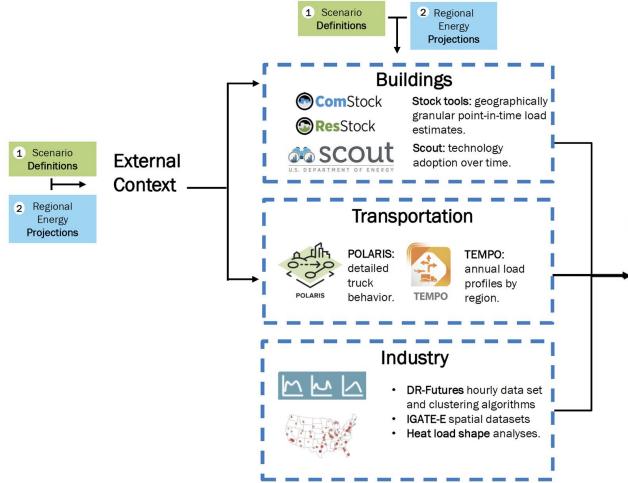
Increase building demand flexibility potential 3X by 2050, compared to 2020, to enable a net-zero grid, reduce grid edge infrastructure costs, and improve resilience.

These <u>draft</u> goals were presented and discussed during the "BTO Strategy and Roadmap" session at **BTO Peer Review**

Stanford **ENGINEERING** Energy Modeling Forum

Decarbonizing Energy through Collaborative Routes and **Benefits** (DECARB)

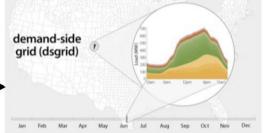
Low Emissions Electricity Program & GHG Corporate Reporting



Global Change Analysis Model (GCAM)

IPCC 6th Assessment Report (AR6)

Primary obstacles are related to data limitations and modeling complexity inherent to more spatially- and temporally-resolved analyses



Decarbonizing Energy through Collaborative Routes and Benefits (DECARB)

Task 6: Project Electricity Load at High Spatiotemporal Resolution

dsgrid

Future work on Scout will focus on developing capabilities that address existing gaps and meet the needs of a growing set of stakeholders

EERE/BTO:

Track and update building and economywide decarbonization scenarios as needed to inform strategic priorities.

Researchers:

Rapidly assess impacts of existing and emerging technologies and operational approaches.

State/regional policy officials:

Represent state-specific policy and technology drivers for building decarbonization and conduct analyses at the state and national levels.

Utilities and grid planners:

Represent demand-side resource impacts on grid futures with varying levels of low-carbon electricity deployment.

Thank You

Lawrence Berkeley National Lab & National Renewable Energy Lab Aven Satre-Meloy, Research Scientist & Chioke Harris, Senior Research Engineer <u>asatremeloy@lbl.gov</u> | <u>chioke.harris@nrel.gov</u> WBS 3.5.5.20 (LBNL) | WBS 3.5.555 (NREL)

REFERENCE SLIDES

Project Execution

			FY2022		FY2023				FY2024				
Planned budget													
Spent budget													
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Past Work													
Q2 Milestone: New minor Scout version released on GitHub				•									
Q3 Milestone: Updated Scout core ECM set and analysis results					Þ								
Q4 Milestone: New major Score	ut version released on GitHub												
Current/Future Work													
Q2 Milestone: New minor Scout version released on GitHub													
Q3 Milestone: Updated Scout core ECM set and analysis results								•					
Q4 Milestone: New major Scout version released on GitHub									•				
Q2 Milestone: New minor Scout version released on GitHub													
Q3 Milestone: Updated Scout core ECM set and analysis results												•	
Q4 Milestone: New major Scout version released on GitHub													
Go/No-Go Decision	Go/No-Go Description	Go/No-Go Criteria					(Go/No-Go Due Date					
New Scout version	Fully documented Scout engine available for public release along with stock and measure	Public GitHub repository contents available to TMs.					1 1	8/31 (in each of 2022, 2023, and					

• FY23 "New minor Scout version" milestone delayed ~1 month due to unanticipated data updating issue

datasets.

2024)

Team

Aven Satre-Meloy, PhD Scout Co-Principal Investigator Computational Research Scientist/Engineer <u>ASatreMeloy@lbl.gov</u> eta.lbl.gov/people/Aven-Satre-Meloy

Chioke Harris, PhD Scout Co-Principal Investigator Researcher IV-Model Engineering <u>Chioke.Harris@nrel.gov</u> https://www.nrel.gov/research/staff/chioke-harris.html

Jared Langevin, PhD Scout Co-Principal Investigator Research Scientist/Engineer JLangevin@lbl.gov https://buildings.lbl.gov/people/Jared-Langevin

Stakeholders/Partners

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

