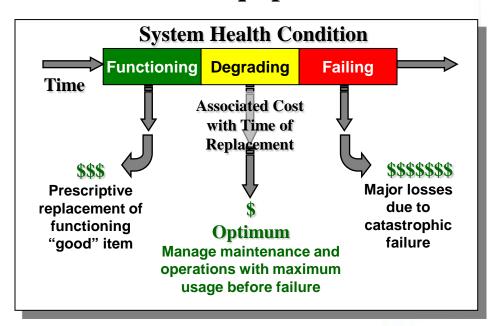
Power Electronics Reliability

2010 Update Conference – DOE ESS Program November 4, 2010

Mark A. Smith – Systems Readiness & Sustainment Technologies
Robert Kaplar, Matthew Marinella, Reinhard Brock, James Stanley,
and Michael King – Radiation Hard CMOS Technology
Stan Atcitty – Energy Infrastructure and Distributed Energy Resources
Sandia National Laboratories

Thanks to Dr. Imre Gyuk for supporting this work.



Project Goals

- Use experiments and modeling to investigate and characterize stress-related failure modes of post-silicon power electronic (PE) devices such as silicon carbide (SiC) and gallium nitride (GaN) switches.
- Seek opportunities for condition monitoring (CM) and prognostics and health management (PHM) to further enhance the reliability of power electronics devices and equipment.
 - CM: detect anomalies and diagnose problems that require maintenance
 - PHM: track damage growth, predict time to failure, and manage subsequent maintenance and operations in such a way to optimize overall system utility against cost

Project Accomplishments

- Developed relationships with several industrial and academic partners involved in post-silicon device work
- Obtained a number of samples of SiC devices for stress testing
- Modified experimental test set-ups to accommodate new devices and provide new stress conditions
- Performed stress testing on several devices to induce representative degradation signatures
 - Dielectric breakdown and flatband/threshold voltage shifts in SiC MOS capacitors
 - Bias temperature stress induced increase in SiC MOSFET on-state resistance
 - I-V curve shift in Schottky diode
- Demonstrated corresponding concepts for CM and PHM

Materials and Devices/Tests

Material	<u>Formula</u>	Band Gap
Silicon	Si	1.11 V
Silicon Carbide	SiC	3.25 V*
Gallium Nitride	GaN	3.4 V*
*Depending on polytype		

• SiC vs. Si

- Higher breakdown field
- Allows making lower on-state resistance devices
- Higher temperature operation
- Allows faster switching
- More efficient grid equipment
- Smaller footprint, higher density

Stress Tests

- SiC MOS capacitors
- SiC MOSFETs
- SiC Schottky Diodes

• I-V Tests

- SiC JFETs
- SiC Thyristors

• Future Tests

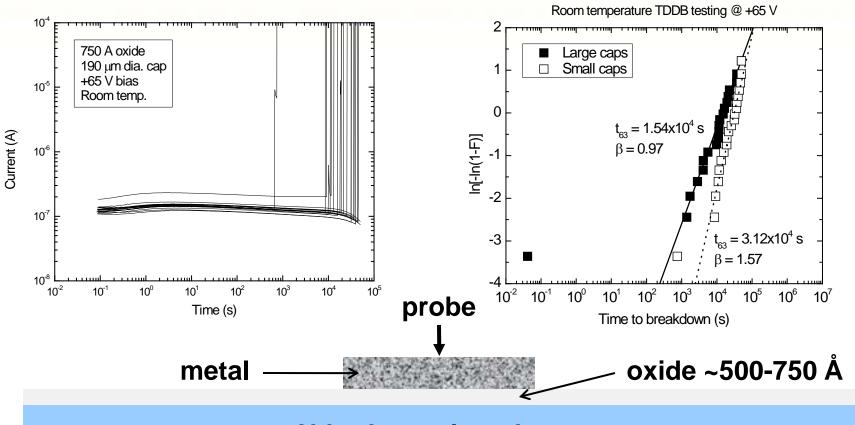
- GaN HEMTs
- Others (TBD)

Stress Tests

Stresses

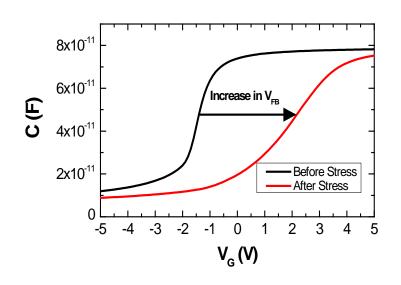
- Voltage
- Current
- Elevated Temperature
- Bias Temperature Stress (BTS)
- Other Combinations

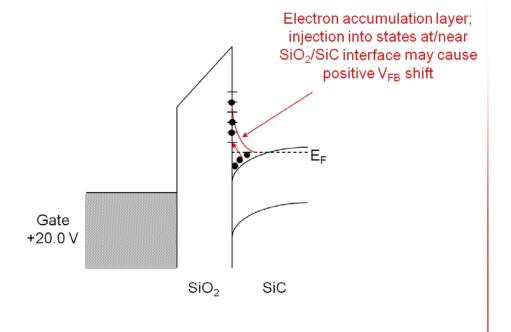
Effects


- TDDB (Time-Dependent Dielectric Breakdown)
- HCI (Hot Carrier Injection on smaller devices)
- NBTI (Negative-Bias Temperature Instability)
- Flatband/threshold shift (charge injection from BTS)
- Snapback
- Reverse Bias Breakdown
- Others (device dependent)

SiC MOS capacitors (TDDB)

Weibull Fit

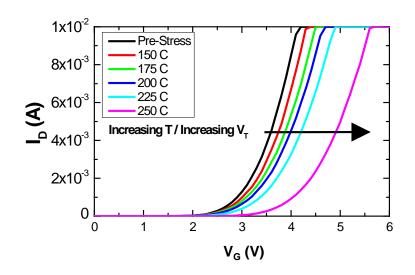

N-body semiconductor

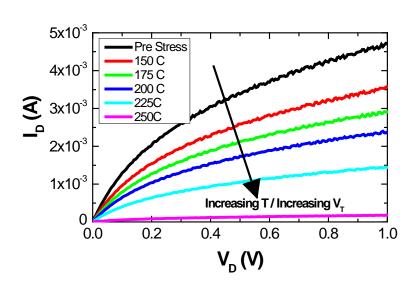


SiC MOS Capacitors (BTS tests)

Capacitance-voltage (C-V) curves before and after temperature stress

Negative charge injection into traps at/near the oxide semiconductor interface

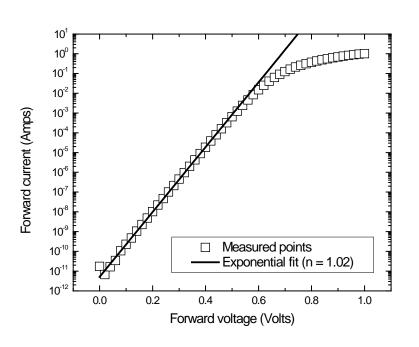




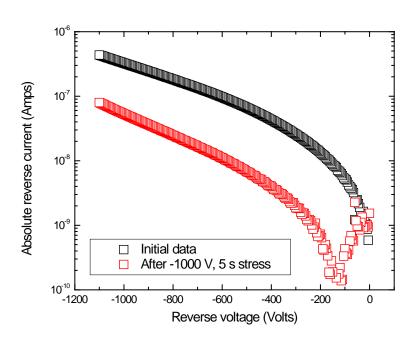
SiC MOSFET (BTS tests)

Drain Current vs. Gate Voltage $(V_D = 1 V)$

Drain Current vs. Drain Voltage ($V_G = 3.5 \text{ V}$)

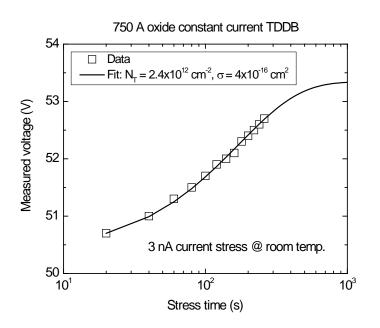


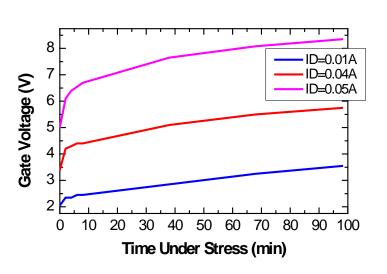
Bias temperature stress induces higher on-state resistance.



SiC Schottky Diodes

Forward I-V Curve


Effect of Voltage Stress on Reverse I-V Curve



CM/PHM Concepts

Charge Accumulation in SiC MOS Capacitor

Voltage Threshold Shifts in SiC MOSFET

Conclusions

Benefits of CM/PHM

- Operate power conversion systems in ways that will preclude predicted failures
- Reduce unscheduled downtime and thereby reduce costs
- Pioneering reliability in SiC and GaN
- Future Work
 - Higher stresses
 - Test simple sensors vs. laboratory instruments
 - Once failure progression is understood, could design devices that degrade gracefully to facilitate PHM
 - Emerging field: publications in basic physics

Questions?

