

Residential Gas-fired Cost-effective Triple-state Sorption Heat Pump

Oak Ridge National Laboratory Kyle Gluesenkamp, PhD gluesenkampk@ornl.gov

Project Summary

Timeline:

Start date: Oct 1, 2016

Planned end date: Sept 30, 2019

Key Milestones

 Model evaluation: heating capacity >20 kBtu/hr @-11°F ambient, SGCOP>1.2; June 30, 2017

2. Resorption configuration eliminated; June 30, 2017

3. Reactors evaluated at 22.3 W/L heating capacity at entering glycol temperature of -13.4°C (+8°F); Nov 15, 2017.

Budget:

Total Project \$ to Date:

DOE: \$2000k

Cost Share: \$59k

Total Project \$:

• DOE: \$2000k

Cost Share: \$234k

Key Partners:

SaltX Technology Holding, AB (formerly ClimateWell, AB)

Rheem Manufacturing Company

Purdue University

Project Outcome:

Validate the performance of gas-fired sorption heat pump with 1.4 seasonal gas COP at acceptable price premium

Proposed Goals

Metric	State of the Art	Proposed
Primary SCOP	0.87 (furnace) 0.83 (elec. HP)	1.4
GCOP @ 0°F	0.87 (furnace) 0.30 (elec. HP)	1.20

Team

Partners, Subcontractors, and Collaborators:

- Rheem Manufacturing Company: ensure market relevance, provide prototype materials
- SaltX Technology: develop reactor cores, sealed system
- ORNL: System-level integration and evaluation
- Purdue University (subcontract to ORNL): PhD student with GO! program

Team

Bo Shen R&D Staff

R&D Staff

Anthony Gehl Viral Patel R&D Staff

- Experimental design and analysis
- Prototype fabrication, assembly, evaluation
- System modeling

Troy Trant Sr. Mgr, Advanced **Technology Analysis**

Vishwanath Ardha **Combustion Research** Engineer

- Components, component sizing
- Integration with space/water heating systems
- Market analysis

All parties: biweekly teleconferences; periodic in-person meetings

Ingemar Hallin **Project Manager**

Corey Blackman Chief Engineer

- SaltX matrix, salt, and vessel design and fabrication
- Burner design and fabrication

Prof. Ming Qu Advisor

- System modeling
- Experimental design support

Challenge

Problem Definition:

- High cost of residential space heating: ~\$9,000 of gas over typical furnace lifetime
 Maximum thermodynamically feasible furnace efficiency: 98%
- Current furnaces are approaching thermodynamic maximum!
- Gas technologies with efficiency >100% have been too expensive for mass market
 - Absorption
 - Rotating seals (pump)
 - Ammonia expansion valve (specialty item)
 - Non-standard steel-tube heat exchangers
 - Periodic in-field charging in case of leakages through pump mechanical seals
 - Adsorption
 - Poor cold climate performance
 - Switching valves to regulate refrigerant flow
 - Engine-driven heat pump
 - Rotating seals (compressor)
 - Large parts count (engines)
 - Periodic in-field charging in case of leakages through pump mechanical seals

Approach – Working Principle

- Gas-fired heat pump extracts heat from ambient
- Novel nano-coated matrix suspends ammoniated salt and ammonia in heat exchange vessels
- Continuous heating by cyclic vessel operation
 - Vessel A: desorption (fuel) absorption (heating)
 - Vessel B: evaporation (extract ambient heat) condensation (heating)

Heat flows in desorption mode:

Heat flows in absorption mode:

Approach – Benefits

- Reduce cost of gas to consumers by 34% (AFUE of 140% vs 92%)
- Novel SaltX sorption heat pump addresses cost/complexity of traditional gas heat pump technologies:
 - No moving parts in sealed system (no pump, no valves)
 - High performance at cold ambients
 - Ammonia is housed entirely in outdoor unit, in fully hermetic vessels
 - No specialty ammonia components required
 - no expansion valve
 - no regulating or shutoff valves
 - no pump
 - no flexible seals
 - no sliding or rotating seals

Approach – Uniqueness

SaltX design eliminates problematic components in other gas fired heat pump

	SaltX	Ammonia/ water absorption	Adsorption	Gas engine driven vapor compression
Rotating seals	None	Pump	None	Compressor
Flex lines	None	None	None	Compressor
Expansion valve	None	Specialty item	Specialty item	Standard item
Switching valves	None	None	Specialty item	None
Specialty pumps	None*	Specialty item	None*	None*
Cold climate	Excellent	Excellent	Poor	Good

^{*}only require readily-available hydronic pumps with common specifications

Impact

- MYPP: compared with 2010 TNT (0.78 AFUE), 44% cost of energy savings
- Compared with 2030 TNT (0.92 AFUE condensing furnace), 34% cost of energy savings
- 3-4 year simple payback for climate zones 1-2
- 1,037 TBtu/yr technical potential
- Straightforward installation for existing HVAC contractor base, with outdoor combustion and hydronic coupling between indoor/outdoor units
- Unique Characteristics: Utilize innovative SaltX matrix technology to overcome the traditional product complexity of gas heat pumps
 - Fully hermetic sealed ammonia system (no rotating seals)
 - No pumped ammonia

Impact - Commercialization Path

Progress – Vessel Fabrication and Evaluation

Experimental test results acquired: single vessel pair delivered 22.3 W/L heating capacity at entering glycol temperature of –13.4°C (+8°F). This is 64% of the target volumetric capacity. We are increasing volumetric capacity with improved burner controls, to:

- Increase heat pipe temperature
- Improve modulation during end of desorption phase

Vessels mounted on a skid with the burner, hybrid heat pipe, and controls

Vessels connected to the glycol loop and heating fluid loop at the testing facility

Progress - Breadboard Fabrication

- Target heating capacity:
 12.5 50 kBtu/hr @ 47° F
 ambient (modulating)
- At current heat exchanger and vessel production capacities, this requires 4 pairs of vessels

Progress - Breadboard Design

Breadboard is more complicated than eventual product:

Stakeholder Engagement

- Collaboration among national laboratory (ORNL), industry (Rheem, SaltX), university (Purdue), and relevant component suppliers
- Active engagement with Rheem, US-based manufacturer of gas heating equipment
- Publications:
 - Blackman, Corey; Kyle R. Gluesenkamp, Mini Malhotra, Zhiyao Yang (2017). "Study of Optimal Sizing for Residential Sorption Heat Pump System." International Sorption Heat Pump Conference, August 7–10, 2017, Tokyo, Japan.
 - Yang, Zhiyao, Kyle R. Gluesenkamp, Andrea Frazzica (2017). "Database of Equilibrium Vapor Pressures for Sorption Materials." *International Sorption Heat Pump Conference*, August 7–10, 2017, Tokyo, Japan.
 - Zhu, Chaoyi; Kyle R. Gluesenkamp, Zhiyao Yang, Corey Blackman. "Unified Model Applicable to Diverse Sorption Heat Pumps: Adsorption, Absorption, Resorption, Multistep Crystalline Reactions, and Combined Condenser/Evaporator" Manuscript in preparation.

Remaining Project Work

- FY18

- Evaluate breadboard prototype standard conditions
- Evaluate breadboard prototype extended conditions
- Dissemination: Publish chemisorption review paper
- Dissemination: Publish experimental results
- Design packaged prototype

- FY19

- Evaluate packaged prototype
- Commercialization determination by industry partners (stage gate)
- Dissemination: Publish experimental results and project learnings
- Beyond this project period of performance
 - Commercialization determination by industry partners
 - Continued development to address challenges identified in this project

Thank You

Oak Ridge National Laboratory
Kyle Gluesenkamp, PhD
gluesenkampk@ornl.gov

REFERENCE SLIDES

Project Budget

Project Budget: \$2000k DOE plus \$234k cost share, beginning in FY 2017

Variances: None

Cost to Date: \$563k

Additional Funding: None

Budget History										
FY 2017 (past)			2018 rrent)	FY 2019 (planned)						
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share					
2,000k	47k	0	12k to date							

Project Plan and Schedule

Project Initiation and End Dates: Oct 1, 2017 – Sep 30, 2020 **Slipped milestones**: Delays in vessel and HX fabrication

Milestone - met
Milestone - planned
Go/No-go milestone

	Task	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
1	IP Management Plan	1											
2/12	T2M activities	2								12			
	2.1 US market survey												
	12.1 commercialization determination												
	12.2 outreach to utilities												
	12.3 photorealistic CAD rendering for pamphlet												
14	T2M: Expanded markets										14		
	14.1 product requirement definitions for oil and prop	ane f	uel; and	hydron	ic delive	ery syst	tems						\Diamond
3	product requirements: dimensions, capacity, interfaces	3											
4/13	component design modeling	4								13			
5/9	system design modeling	5						9					
	5.1 establish hardware-based cycle model												
	5.2 evaluate at design (47°F) and cold (-13°F, -4°F)												
	9.1 model validation - breadboard data								\Diamond	\Diamond			
	9.2 refine component sizes for packaged prototype									\Diamond			
6	Breadboard prototype design and component developm	6											
	6.3 build - reactor core												
	6.4 design - balance of system												
	6.5 reactor core component testing - CW					♦							
7/8	Breadboard prototype system assembly and evaluation				7				8				
	7.1 assembly - at ORNL						\Diamond						
	7.2 lab evaluation Go/No-go: GCOP>120% and capac	ity >~	60 kBtu	/h				\Diamond	<u> </u>				
	8.1 lab evaluation: extended temperature condition	ıs											
10	Packaged prototype design and assembly							10					
11	Packaged prototype evaluation								11				
	11.1 lab evaluation: AFUE>135% and capacity >~75 kB	u/h									\Diamond		
	11.2 installation - research home or FRP												
	11.3 evaluation - research home or FRP												

Note: not all subtasks shown