

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

ORNL – Systems Technology Research and Development Support

Evaporator Fan Motors

Wireless Thermostatic Radiator Valves

Oak Ridge National Laboratory Brian A. Fricke, Group Leader, Building Equipment Research 865.576.0822 | frickeba@ornl.gov

Project Summary

Timeline:

Start date: FY15

Planned end date: FY20

Key Milestones (insert 2-3 key milestones and dates)

- 1. Final report, QM Power; 30 April 2018
- 2. Final report, AO Smith; 31 March 2019
- Final report, Steven Winter Associates;
 30 September 2020

Budget:

Total Project \$ to Date:

- DOE: \$729k
- Cost Share: \$1,980k

Total Project \$:

- DOE: \$1,317k
- Cost Share: \$3,000k

Key Partners:

A.O. Smith

QM Power

Steven Winter Associates

Project Outcome:

Understand technical and cost performance through in situ testing of energy-efficient HVAC&R technologies:

- Micro Combined Heat & Power, wireless radiator valve and Q-Sync motor
- Measured energy savings from demonstration projects led by ORNL
- Design, code review and installation considerations required for successful implementation
- Training, operations and maintenance aspects for continued operation and energy savings

Demonstrations support the HVAC, WH & Appliance Sub-Program MYPP 2020 goal to enable technologies that can reduce primary HVAC Energy Use Intensity (EUI) by 60% and water heating EUI by 25%.

Team – Micro CHP

AO Smith: System design and fabrication, securing sites, point of contact with code officials and installing contractors, instruct site staff on operation of the system.

Oak Ridge National Laboratory: Measurement and verification process development and implementation, data acquisition and analysis, final reporting.

Yanmar: Prime mover development (engine supplier and engine controls)

Briggs & Stratton: Prime mover development (engine supplier and engine controls)

MicroCogen Partners: Consulting, identification of sites

Challenge – Micro CHP

The Problem:

- 400,000 commercial buildings in North America have high hot water demand
 - Candidates for thermally-led micro Combined Heat & Power systems
- Lack of information available to consumers about small (under 50kW) CHP systems
 - System performance
 - Regulatory, installation, payback and ease of system operation

Project Goal:

- Demonstrate that microCHP systems can be:
 - Installed cost-effectively (under 3 year payback)
 - With no complex operation or maintenance required

Benefit:

- Understand technical and regulatory barriers for applications of microCHP systems
- Energy savings in terms of source energy
 - 90% efficiency with uCHP versus only 60% with conventional water heating

Approach – Micro CHP

- Identify necessary site characteristics for a water heating system of this size, with necessary electrical interconnection and safety provisions.
- Meter natural gas usage, electric power production and hot water generation.
 - Accurately characterize the energy savings potential for a real building installation
 - Pre-retrofit performance with existing water heating equipment
 - Post-retrofit performance with micro CHP
 - Clearly show what performance benefits and energy savings can be provided by a uCHP system.
 - Overcome barriers to installation.
- Identify start-to-finish (from design to operation and decommissioning) issues associated with successfully implementing a uCHP system as a retrofit to an existing commercial water heating system.
- Inform future product improvements.

Impact – Micro CHP

- MicroCHP system generates hot water for a building *and* simultaneously generates electricity
- If uCHP is fully implemented, the energy savings could be as much as 0.54 quads/year of primary energy savings
- This new microCHP system is smaller capacity than units already on the market
 - Serve smaller commercial facilities such as hotels and multifamily housing.
 - Deliver energy savings to market sectors that have historically been unable to costeffectively install more complicated CHP units
- Manufacturer's goal: Payback of less than three years
 - Without the need for any incentives such as tax credits, grants, etc.
- The performance benefits have been demonstrated at the first test site, with performance exceeding expectations
 - The remaining three sites, each a different type of building occupancy, will provide additional performance data for a variety of settings
 - This will demonstrate the validity of the microCHP technology for the target occupancies (multi-family housing, hotels, restaurants and health care)
- The project has also addressed regulatory issues (plans review by building code officials) with that information used to inform future projects as well as design/installation guidance

Progress – Micro CHP

- Measurement & Verification plans complete
- Site questionnaire and site selection complete
- Data acquisition
 - Complete at 1 site; Remaining 3 sites to be instrumented
- Data analysis
 - Preliminary analysis has been conducted for the first test site
 - Data analysis for the three remaining sites to be completed

Remaining Project Work

- Complete baselining and retrofit data acquisition at three remaining sites.
 - Two in WI and one in MN: Dec 31, 2018
- Complete the analysis and final report by March 31, 2019.

Stakeholder Engagement

- Four commercial host sites.
- Presentations to commercial owners/operators via webinar and Better Buildings Summit.
- Report findings to be shared with Better Buildings community and utility stakeholders.

Team – Evaporator Fan Motors

QM Power: Manufacturer of permanent magnet synchronous AC motors for commercial refrigeration applications

Oak Ridge National Laboratory: Measurement and verification process development and implementation, data acquisition and analysis, final reporting

Supermarket Partners:

- Defense Commissary Agency (DeCA)
- HyVee
- Price Chopper
- Shaw's
- Vons
- Wal-Mart
- Whole Foods Market

Challenge – Evaporator Fan Motors

The Problem:

- 16 million evaporator fan motors in commercial refrigeration equipment.
 - Display cases in supermarkets and convenience stores; refrigeration equipment in food service; beverage vending machines, etc.
- Shaded pole, permanent split capacitor (PSC) and electronically commutated (EC) motors currently in use.
- Approximately 61 TBtu per year of primary energy.

Solution:

- Permanent magnet synchronous motors developed by QM Power.
 - Significantly more efficient than current technology.
 - Lower current draw; Increased power factor.

Barrier:

- Motor has just recently been commercialized.
- Lack of performance data on the new motor.
 - Low market penetration

Approach – Evaporator Fan Motors

- Measure power consumption of incumbent fan motors and QM Power's new synchronous motor.
 - Refrigerated display cases; Walk-in coolers/freezer
- Side-by-side energy comparison of synchronous motor and incumbent fan motors.
- Whole-store retrofit before and after energy comparison.
- Deliver unbiased analysis of energy savings potential.
 - ORNL published reports, presentations at conferences.
 - Encourage market adoption, utility program development.

Impact

- Up to 35% more efficient than EC motors.
- Up to 80% more efficient than shaded-pole motors.
- 37 TBtu/yr energy savings if all motors switched to QM Power synchronous motors.
- Retrofit incentives via National Grid (utility in the Northeast).
- Press coverage and reports: ORNL; San Diego Gas & Electric; E Source; Appliance Design; The Energy Times; Air Conditioning, Heating, Refrigeration News.

Progress – Evaporator Fan Motors

- Project is wrapping up.
- Seven side-by-side comparisons completed.
 - Refrigerated display case evaporator fan motors
 - Walk-in cooler/freezer evaporator fan motors
 - 35% to 80% energy savings
 - 40% increase in power factor
- One whole-store retrofit completed.
 - 185 refrigerated display case motors retrofitted
 - 77 walk-in cooler/freezer motors retrofitted
 - Average motor energy savings: 46%
 - Simple payback: 2.6 years (includes utility incentives)
- Demonstrated long-term reliability through side-by-side comparisons.
- Demonstrated significant energy savings.

Remaining Project Work

• Complete final report by 30 April 2018.

Stakeholder Engagement – Fan Motors

- Report results of demonstrations and network with industry leaders:
 - Winter and Summer ASHRAE Conferences
 - Food Marketing Institute Energy & Store Development Conferences
 - Purdue International Refrigeration and Air Conditioning Conferences
- Seek support from refrigeration system OEMs:
 - Hillphoenix, Hussmann
- Demonstration sites from major supermarket chains:
 - HyVee, Price Chopper, Shaw's, Vons, Walmart, Whole Foods Market

Team – Wireless Thermostatic Radiator Valves

Steven Winter Associates, Inc.: Consulting engineering and analysis services; identify, develop, and deploy energy efficient building technologies.

Oak Ridge National Laboratory: Measurement and verification process development and implementation, data acquisition and analysis, final reporting.

Sentient Buildings: Web application development, data analytics for buildings.

conEdison: Large utility with a key role in New York Sate Reforming the Energy Vision (REV) program – changing the way utilities make investments and empower customers to drive efficiency.

E Source: Work with utilities on DSM programs.

Challenge – Radiator Valves

The Problem:

- Multi-tenant and multifamily building heating energy use.
 - Driven by systems that give no feedback to users.
- Few tenants pay for heat (if they do, it's not in a meaningful and rational way).
- Heat is not evenly distributed.
- Average indoor temperature during winter:
 - Northeast: 65°F
 - New York City: 74° F
- Thermal sub-metering under-utilized.
 - Viewed as technically challenging.

Solution:

- Demonstrate that thermal sub-metering can achieve 50% reduction in space heating.
 - Wireless thermostatic radiator valves.
 - Real-time energy monitoring.
 - Consumption-based billing for heat.
 - Address behavioral opportunities with tenants.
 - Allow tenants to control cost of heating (rather than being "baked" into their rent).

Approach – Wireless Radiator Valves

- Identify suitable multi-family buildings utilizing central hot water/steam heat.
- Install wireless thermostatic radiator valves at space heating terminal units.
 - Regulates terminal heat output in response to local temperature.
 - Communicates wirelessly with central Energy Management and Information System (EMIS).
- Utilize smart valve and central boiler plant data to equitably meter thermal output.
 - Develop personnel interface and heat allocation algorithm.
- Develop system to bill tenants for their heating energy use.
 - Develop tenant interface.
 - Measure energy impact due to billing change.

Impact

- 50% savings in heating energy (360 TBtu).
- Improved heat distribution and balancing of heating in each space.
- Tenant control over space temperature.
- Allow tenants to control cost of heating (rather than being "baked" into their rent).

Progress – Radiator Valves

- Project recently started (kick-off on 12 Dec 2017)
- M&V Plan and Site Questionnaire completed
- Currently recruiting sites
 - 261 unit apartment building, built 1987, two-pipe steam with PTAC terminal units
 - 180 unit apartment building, built 1970, two-pipe steam with PTAC terminal units

Remaining Project Work

- Install instrumentation and data acquisition equipment, Summer 2018.
- Begin baseline data collection, Winter 2018/2019.
- Install wireless radiator valves and necessary instrumentation, Summer 2019.
- Develop heat allocation algorithm and tenant interface, Summer 2019.
- Pilot tenant billing for heating energy use, Winter 2019/2020.
- Analysis and final reporting, Summer 2020.

Stakeholder Engagement

- conEdison is actively engaged.
 - Empowering customers with choices on how they manage and consume energy.
- Sentient Buildings
 - Experience with tenant space heating control, well connected to property management companies and building owners.

Thank You

Oak Ridge National Laboratory, A.O. Smith, QM Power, Steven Winter Associates Brian A. Fricke, Group Leader, Building Equipment Research 865.576.0822 | frickeba@ornl.gov

REFERENCE SLIDES

Project Budget

Project Budget: \$1,317k Variances: N/A Cost to Date: \$717k Additional Funding: N/A

Budget History										
FY 2015 – FY 2017 (past)		FY 2018	(current)	FY 2019 – FY 2020 (planned)						
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share\$					
\$717k	\$1,980k	\$200k	\$330k	\$400k	\$3,000k					

Project Plan and Schedule

Project Schedule												
Project Start: FY 2015		Completed Work										
Projected End: FY 2020		Active Task (in progress work)										
		Milestone/Deliverable (Originally Planned) use for										
		Milestone/Deliverable (Actual) use when met on time										
		FY2017				FY2	FY2018		FY2019			
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Milestones:		-	-	-		-	-	-		-	•	
AO Smith: Final Report												
QM Power: Final Report												
SWA: M&V Installation												
SWA: Baseline data collection												
SWA: Wireless radiator valve retrofit												