High-Efficiency Solid-State Heat Pump Module

2017 Building Technologies Office Peer Review

creativecommons.org

creativecommons.org

Project Summary

Timeline:

Start date: September, 2015

Planned end date: August, 2017

Key Milestones

- ✓ Phase 1: Demonstrate >6.0 °C material-level performance that enables an electrocaloric module COP > 6.0
- Phase 2: Demonstrate TRL3 solid-state heat pump module performance

Budget:

Total Project \$ to Date (through Jan. 2017):

• DOE: \$854,193

Cost Share: \$284,731

Key Partners: (none)

Project Outcome:

United Technologies Research Center shall demonstrate a solid state (refrigerant-free), high efficiency, compact, zero direct global warming heat pump which has the potential to replace refrigerant-based vapor compression systems.

TRL 3 demonstration of solid-state heat pump that has the potential to provide primary seasonal COP > 6 at full commercialization.

Total Project \$:

• DOE: \$1,093,845 (\$679,393 Phase I)

• Cost Share: \$364,615 (\$226,464 Phase I)

Purpose and Objectives

Problem Statement:

- Current regulations (both US and European) and market needs, are driving us to systems with lower global warming footprint and higher efficiency
- Electrocaloric heat pumping is a refrigerant-free technology that has the prospect of being more efficient, compact and quieter than current vapor compression systems

Target Market and Audience: The target market is residential and small commercial buildings. Residential heating/cooling uses >4.5 primary quads annually, and small-commercial >1 Quads for a total of ~5.5 Quads.

Impact of Project:

- ≥25% system efficiency improvement and ~2000x direct GWP reduction enabled through:
 - TRL 3 heat pump module demonstration
 - Electrocaloric heat pump with COP > 6.0
 - Elimination of working fluids with global warming potential with reduced noise and maintenance costs
 - Potential for capacity demonstration (2018); system demo (2020)

Approach

Approach:

- ✓ Leveraged UTRC micro-electrocalorimetry capability to demonstrate material performance over required operating envelope
- ✓ Leveraged CFD based multi-physics modeling tools for module design
- Demonstrate module performance through testing and validated models
- Analyze system-level performance using validated dynamic modeling tools
- Collaborate with Carrier to assess techno-economic impact

Key Issues:

- Module construction and integration
- Module test rig losses and electrical actuation

Distinctive Characteristics:

- Novel electrocalorimeter
- Innovative electrocaloric module concept and dynamic models

Progress and Accomplishments

Accomplishments:

- Demonstrated 7.2 °C (5.6 °C without calibration) temperature lift at module-scale (Apr. 2016)
- >6.0 COP_{electric} performance based on dynamic system model w/ module-scale films (June. 2016)
- Successfully passed Go/No-Go review (Aug. 2016)
- Designed, fabricated and commissioned test rig for module temperature lift evaluation (Sep. 2016)
- Demonstrated first air cooling electrocaloric module concept (Oct. 2016)
- Demonstrated 2.5 °C cooling temperature lift across module (Dec. 2016)
- Detailed electrocaloric multi-physics modeling tool validated (Jan. 2016)

Progress and Accomplishments - Electrocalorimetry

Constant temperature anemometer (CTA) measures energy imbalance

 Concept based on Hot-Wire Anemometer

Energy Compensation Procedure

EC Voltage

EC Temp.

Sensor Temp.

Sensor Power

Progress and Accomplishments - Electrocalorimetry

Coupon- and module-scale calibrated measurements are in agreement within experimental uncertainty

Calibration

• Coupon sensor : <7% loss

• Large sensor (30 x) : 20% loss

Electro-Calorimetry

- Coupon sample : 9 °C lift @170 MV/m
- Large-scale sample: 7.2 °C lift @110 MV/m (5.6 °C without calibration)

Progress and Accomplishments: : Go/No-Go Review

Go/No-Go Criteria:

- ✓ Demonstrated 7.2 °C (5.4 °C without calibration) temperature lift at module-scale (>30X)
- ✓ COP > 7.0 shown based on module-scale films

Progress and Accomplishments: Test Rig Design

Cold side moving piston with hot side fixed plenum

Moving Mesh

Constitutive Eqns.

$$\nabla \cdot \left(J + \frac{\partial D}{\partial t} \right) = 0$$

$$D = \varepsilon_o (1 + \chi(\omega)) E + P_s = \varepsilon_o \varepsilon_r E + P_s$$

$$\rho C_E \frac{\partial T}{\partial t} + \nabla \cdot (-k \nabla T) = Q_j - T \left(\frac{dP}{dT} \right)_E \frac{\partial E}{\partial t}$$

Module Details

Channel- and Device-Level: Conjugate Heat Transfer

Progress and Accomplishments – Module Demonstration

2.5 °C cooling from module demonstrated; Identified test rig losses

- 50% module degraded during commissioning
- Electric field

- 80 V/μm
- Cold side with no field
- 33.0 °C
- Cold side with 80 V/um 30.5 °C

Progress and Accomplishments: Test Rig Improvement

Testing and validated modeling utilized to improve module performance

Voltage

Current

Voltage

Project Integration and Collaboration

Project Integration:

- Carrier, world's largest manufacturer of HVAC&R equipment, has a long history of developing successfully commercialized products
- Carrier has commercialized HVAC technologies developed at UTRC
- UTRC project team is advised by Carrier product and engineering teams to ensure metrics are met during conceptualization and testing phases

Partners, Subcontractors, and Collaborators: None

Communications:

- MRS Spring 2016: EE11.3.06 Calorimetric Studies of Electrocaloric Polymeric Films: Creating Material Requirements from Sub-Component Level Studies, J. Mantese, <u>S. Annapragada</u> et. al.
- ASME IMECE 2016 EPPD Invited Panel on Electrocaloric Cooling (Chairs: **S. Annapragada** (UTRC) and J A Weibel (Purdue), A. Bar Cohen (UMD): "Electrocaloric Heat Pumping: Creating Material Requirements from Sub-Component Studies," J. Mantese et. al.
- Highlighted to UTC CTO and CEO during annual review
- 1 Invention disclosure submitted to UTC for consideration

Next Steps and Future Plans

Next Steps and Future Plans:

- Phase II: (Sept. 2016 Aug. 2017)
 - Prototype 2 under construction
 - Prototype 3 based on learning from Prototype 2 (if needed)
 - System performance analysis and techno-economic assessment
 - Develop plans for potential capacity and system demonstrations
 - Final report submission to DOE BTO

REFERENCE SLIDES

Project Budget

Project Budget: \$1,458K

Variances: none

Cost to Date: \$1,138,924 (FY15-FY17)

Additional Funding: Cost Share 25% UTRC.

• DOE: \$854,193

Cost Share: \$284,731

Budget History												
Sept. 4, 2015 – FY 2015 (past)		FY 2016 – Jan. 30 th 2017 (current)		FY 2017 – Aug. 31, 2017 (planned)								
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share							
\$12,028	\$4,009	\$854,193	\$284,731	\$239,307	\$79,769							

Project Plan and Schedule

Project Schedule									
Project Start: August, 2015			Completed Work						
Projected End: July, 2017		Active Task (in progress work)							
	•	Milestone/Deliverable Milestone/Deliverable (Actual)							
	•								
	FY2015	FY2016		FY2017					
Task	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work									
Q1 Milestone: Sub-scale measurement of ∆Tadiabatic	•								
Q2 Milestone: Electrocalorimeter test rig built			•						
Q3 Milestone: Sub-scale calorimeter measurement that can provide COP>6.0			•						
Current/Future Work									
Q4: Module-scale calorimetric measurement				•					
Q4: Demonstrate COP>6.0 through modeling based on module-film measurements					•				
Go/No-Go Review					•				
Q6 Milestone: Prototype 1 built									
Q7 Milestone: Prototype 1 tested								•	
Q8 Milestone: Prototype 2 tested	T								