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Project Summary

Timeline:
Start date: 10/1/2015
Planned end date: 03/30/2018
Key Milestones
1. M1 Literature review finished by 12/15
2. M2 Existing building data collected by 3/16
3. M3 Commercialization plan developed by 3/17
4. M4 Fault detection method developed by 3/17
5. M5 Root-fault isolation method developed by 6/17
6. M6 Simple payback time is less than 3 years by 9/17
7. M7 VOLTTRON compatible with GUI by 12/17
8. M8 Educational materials prepared by 3/18

Budget:
Total Project $ to Date: 
• DOE: $66,295
• Cost Share: $22,891
Total Project $:
• DOE: $199,997
• Cost Share: $22,394

Key Partners:

Project Outcome: 
• Develop a VOLTTRON compatible, 

automated, and cost-effective whole 
building fault detection and diagnosis tool 
using promising statistical process control 
and machine learning methods;

• Evaluate and demonstrate the cost-
effectiveness of the developed whole 
building fault diagnosis tools using a Drexel 
campus building (Nesbitt Hall);

• Create a commercialization plan for the 
developed automated fault detection and 
diagnosis (AFDD) solutions; and

• Engage undergraduate students into multi-
disciplinary research activities.

KGS Buildings PNNL

Dr. Zheng O’Neill 
(University of 
Alabama)

Dr. Teresa Wu 
(Arizona State 
University)
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Purpose and Objectives

Problem Statement: 
• Malfunctioning control, operation, and building equipment dramatically 

increase the energy consumption (estimated to be 1x1015 BTU for commercial 
building primary energy usage1 and between 0.35 to 17 quads of additional 
energy consumption caused by key faults at a national level2). 

• Existing fault diagnosis solutions mainly focus on component diagnosis, which 
may not lead to overall sustainable and optimally conditioned systems. The 
few existing whole building fault detection studies use calibrated whole 
building energy models for abnormality detection, which requires high 
engineering hours and installation costs.  

• Existing solutions often encounter high market barriers because they have 
limited scalability or high implementation cost due to the needs to manually 
customize algorithms, collect data on the field, especially faulty data (Page 89 
MYPP).

1. TIAX. 2005. Energy Impact of Commercial Building Controls and Performance Diagnostics: Market Characterization, 
Energy Impact of Building Faults and Energy Savings Potential. Final Report to U.S. Department of Energy. 

2. Roth, K.W., D. Westphalen, P. Llana, M. Feng. 2004. “The Energy Impact of Faults in U.S. Commercial Buildings”,
International Refrigeration and Air Conditioning Conference, Paper 665.
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Purpose and Objectives
Target Market and Audience: 
Market - commercial building sector (18 quads of total energy or about 18% of all 
energy used in the U.S. – BTO MYPP). 
Audience – continuous and retro-commissioning company, service company, fault 
diagnosis (building analytics) company, and control company.

Impact of Project: 
Project’s outputs: 1) a cost-effective and VOLTTRON compatible whole building 
AFDD tool (strategies, codes and manuals) based on big data analytics and data 
mining technologies; 2) collected whole building data (with and without faults); 3) 
a market study and commercialization plan for the developed strategies; 4) 
educational materials on whole building fault diagnosis; 5) undergraduate and 
graduate students training opportunities in the building fault diagnosis and 
VOLTTRON areas.
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Purpose and Objectives

Impact of Project (cont.): 
Project’s contribution: The developed strategies 1) are highly automated, i.e. plug-
n-play, self-learning and self-diagnosis; 2) will therefore drastically reduce 
implementation cost (by reducing engineering hours) (payback time < 3 yrs); and 
3) will help to reduce commercial building sector’s (new and existing) energy 
waste and to help achieve the BTO’s key sectoral goal - to reduce the average 
energy use per square feet of all U.S. buildings by 30% by 2030.

a. Near-term outcomes: Developed cost-effective whole building AFDD 
strategies, which satisfy the ET program’s goal: By 2020, accelerated 
technology development will make available cost-effective technologies capable of 
reducing the energy use of typical buildings by 30% compared to high-efficiency 
technologies available in 2010. 

b. Intermediate outcomes: 1) Larger scale building demonstration (5-10 
buildings) to demonstrate the scalability, accuracy, and cost-effectiveness; 
2) Industrial partners start to adopt the strategies into their software.

c. Long-term outcomes: Developed technologies widely adopted in 
commercial buildings to achieve substantial energy savings. 
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Approach

Approach (details in later slides): 
• Develop self-learning and pattern matching automated fault detection 

strategies using big data analytics strategies that are effective at 
handling datasets with high data dimensionality.

• Artificially implement faults in Drexel’s demonstration building: Nesbitt 
Hall.  Building data that contain both artificially implemented faults and 
naturally occurred faults are used to evaluate the developed strategies.

• VOLTTRON platform is utilized for data exchange.  The developed 
strategies are VOLTTRON compatible.

• A market study is performed by our Close School of Entrepreneurship 
students.  A survey study has been implemented to understand the 
market gap etc.  
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Approach

Key Issues: 1) The high data dimensionality and large data quantity of a 
whole building dataset greatly challenge conventional data-driven fault 
detection methods.  The Pattern Matching Principle Component Analysis 
methods which we have successfully developed for air handling units failed 
to effectively detect abnormalities for a whole building dataset; 2) The 
developed strategies need to be cost-effective, i.e., very low engineering 
implementation cost, with high accuracy and low false alarm rate.

Distinctive Characteristics: 
– Use big data analytics strategies (time series data pattern matching, 

feature selection, etc.) to achieve cost-effectiveness and scalability;
– Real building testing and demonstration; 
– Engaging undergraduate students from both Engineering and 

Entrepreneur Colleges; 
– Perform market study to develop a commercialization plan.
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Approach – Whole Building Fault Detection Method 

Snapshot of current 
whole building data

Historical 
baseline data

PCA Model based on 
Selected Features

Similar? Yes

No

Fault free

Faulty

Historical data with 
similar weather and 

building use conditions

Pattern Match (PM):  
Symbolic Aggregate 

Approximation Method 

Need for Pattern Matching: Since building systems behave 
very differently under different weather and operational modes, 
only similar baseline data (selected using the pattern matching 
method) should be compared to avoid detecting abnormality 
caused by other reasons such as weather conditions. 

Feature Selection: 
Partial Least Square 

and Genetic Algorithm

to reduce data 
dimensionality for 

efficient PCA modeling 

Threshold is 
automatically generated 
during the PCA modeling 

process
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Approach – Whole Building Fault Detection Method 
Outdoor temperature SAX pattern

1. Keogh, Eamonn, Jessica Lin, and Ada Fu. "Hot sax: Efficiently 
finding the most unusual time series subsequence." Data mining, 
fifth IEEE international conference. IEEE, 2005.

Symbolic Aggregate approXimation (SAX)1

• Time series data PM – more efficient than 
conventional PM methods;

• Finding time series data motif and discords:
– Motif: a common subsequence pattern that 

has the highest number of non-trivial 
matches;

– Discord: a subsequence of a time series that 
has the largest distance to its nearest non-
self match.

Outdoor humidity SAX pattern

Outdoor temperature and 
humidity are used for PM.  
Using SAX PM, the PM 
efficiency is significantly 

improved.
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Approach – Whole Building Fault Detection Method 

Dataset dimension reduction and variable selection method –
partial least square and genetic algorithm (PLS-GA)1

• 20% useful variables are selected for later PCA modeling, significantly 
increased PCA modeling efficiency and accuracy.

• Features selected can be used for later fault diagnosis.

1. Wise, B. M., Gallagher, N., Bro, R., Shaver, J., Windig, W., and Koch, 
R. S., PLS Toolbox 4.0. Eigenvector Research Incorporated, 3905, 2007. 
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Service Providers Survey
https://drexel.qualtrics.com/SE/?SID=SV_6ujZWI0IPOJf4r3

Building Owner/Operator Survey
https://drexel.qualtrics.com/SE/?SID=SV_78rH3vujFJ5PlKB

Progress and Accomplishments
Accomplishments: 1) Literature review revealed a lack of whole building AFDD 
technologies; 2) Market study further indicated the need for whole building, cost-
effective, and accurate AFDD technologies; 3) Identified a demo building and 
collected baseline data; 4) Implemented 17 fault tests in three seasons; 5) 
Developed a new PM whole building fault detection method; 6) Supported 4
undergraduate students in both engineering and business disciplines.
Market Impact:
• Survey study is performed to understand 

market barrier and technology gap: 
1. Great market opportunities exist;
2. Cost-effectiveness; accuracy and false 

alarm rate; difficulty to choose the right 
product; and the lack of consumer 
training are the major barriers and gaps.

• Routine meetings and conference 
presentations to disseminate findings.

• Our industrial partners (KGS Buildings and 
Kinetic Buildings) are both interested in the 
developed technologies.
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Accomplishments: PM Whole Building Fault Detection 
Method Preliminary Evaluation

Data from five manually implemented faults and one naturally occurred 
fault are used to evaluate the detection accuracy

For mis-detected days (August 1 and 8), we found no obvious symptoms (only a few component 
variables are affected) regarding to the whole building behavior (details in backup slides).  

Date Start End Fault Description Implementation 
Method

Detection 
Results

07/06/16 16:00 24:00 Chiller stops working Naturally 
occurred

Yes

08/01/16 15:59 21:30 AHU-1 supply air pressure sensor 
has a negative bias (0.2 in.w.g)

Override in BAS No

08/08/16 10:22 21:16 AHU-1 supply air temperature 
sensor has a positive bias (4 ºF)

Override in BAS No

08/13/16 19:30 22:00 Schedule faults (change to 
unoccupied mode 2.5 hrs earlier)

Override in BAS Yes

08/16/16 11:28 21:41 Chilled water differential pressure 
senor has a negative bias (0.5 psi)

Override in BAS Yes

08/18/16 09:30 19:17 AHU-1 outdoor air damper stuck at 
30% open

Override in BAS Yes
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Accomplishments: PM Whole Building Fault Detection 
Method Preliminary Evaluation

Data from five fault free days (07/26/16;08/26/16 to 08/29/16) are used to 
evaluate the false alarm rate.  The method does not generate any false 
alarm.

T2 for a fault free day: July 26, 2016

T2 of baseline data with 
similar weather and 
building operation

T2 of test day data

T2 of baseline data with 
similar weather and 
building operation

T2 of test day data: 
significantly higher than 
threshold when the 
fault occurred

Fault period: 
chiller stopped

T2 for a fault day (chiller stopped working): 
July 06, 2016
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Accomplishments: VOLTTRON Integration with Nesbitt BAS

Integrate VOLTTRON Platform with MATLAB Environment and Drexel Building 
Automation System (BAS)

VOLTTRON WebCTRL
Driver

AFDD Application in 
MATLAB
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Progress and Accomplishments 
Project Integration and Collaboration

Awards/Recognition: None.

Student Training: 4 undergraduate students : 1) two engineering seniors: one now 
works for a design form and one works for a FDD service provider; 2) two business 
students conducted the market study and developed a commercialization plan.  
The Ph.D. student, Yimin Chen, is currently a Ph.D. candidate. We are also hiring 2
more engineering students for interface development and data analysis. 

Lessons Learned: 1) Challenges when data dimension dramatically increased; 2) 
Real building testing often brings uncertainties caused by weather/systems and 
other unforeseen challenges; 3) Survey challenges. 

Project Integration: Weekly face to face meetings among Drexel team members.  
Monthly and Bi-monthly meetings among collaborators.

Partners, Subcontractors, and Collaborators: 
Consultants: Dr. O’Neill from The Univ. of Alabama; Dr. Wu from Arizona State 
University.  Industrial Partners: KGS Buildings and Kinetic Buildings.
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Next Steps and Future Plans: 1) Further evaluate the developed fault 
detection strategy with more building data, especially those that contain 
faults with a whole building impact; 2) Develop a whole building fault 
diagnosis strategy to isolate fault causes; 3) Develop educational materials 
to be adopted in Drexel’s existing architectural and mechanical engineering 
courses (MEM 414; AE 430; AE 552).

Next Steps and Future Plans

Communications:
• Regnier, A. and Wen, J., “Automated Fault Diagnostics for AHU-VAV Systems: A Bayesian Network 

Approach,” 2016 Purdue High Performance Buildings Intelligent Building Operation Session, West 
Lafayette, IN, July 2016.  

• Wen, J., “From Big Data to Big Energy Saving - Improving Building Energy Efficiency and Building-
Human interactions through Advanced Control, Operation and Data Analytics,” Invited Seminar, 
Beijing University of Civil Engineering and Architecture, Beijing, China, August, 2016.

• Wen, J., “From Big Data to Big Energy Saving - Improving Building Energy Efficiency and Building-
Human interactions through Advanced Control, Operation and Data Analytics,” Invited 
Presentation, ASHRAE Philly Chapter, Philadelphia, PA, November, 2016.

• Chen, Y., J. Wen, and Rgenier, A., “Using Pattern Matching and Principal Component Analysis 
Method for Whole Building Fault Detection”, ASHRAE 2017 Summer Conference, Conference Paper 
Accepted, Long Beach, CA, June, 2017.
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REFERENCE SLIDES
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Fault experiments in Nesbitt Hall

17 whole building level faults were implemented in Nesbitt Hall in summer, fall and winter 2016

Abbreviation:
SA: supply air;  OA : outdoor air; CHWS: chilled water supply; DEM adj: demand adjustment
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Project Budget: $199,997
Variances: None
Cost to Date: $66,295
Additional Funding: DOE BIRD Fellowship (a PHD student, Yimin Chen, is partially 
sponsored by this fellowship)

Budget History

10/1/15 – FY 2016
(past)

FY 2017
(current)

FY 2018 – 3/31/18
(planned)

DOE Cost-share DOE Cost-share DOE Cost-share
$66,295.00 $22,890.78 $2,000.00 $0.00 $199,997.00 $22,394.00

Project Budget
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Project Plan and Schedule
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Details about the Mis-detected Faults
August 1, 2016: AHU-1 supply air static pressure sensor was implemented with a negative 
bias (0.2 in.w.) from 15:59 to 21:30.

T2 of baseline data with similar 
weather and building operation

T2 of test day data

Fault period

AHU variables: 2 variables show abnormality

T2 of the whole building dataset is not significantly 
different from the baseline one
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Details about the Mis-detected Faults
August 1, 2016: AHU-1 supply air static pressure sensor was implemented with a negative 
bias (0.2 in.w.) from 15:59 to 21:30 (cont.).

Chiller variables: no significant differences

VAV variables (selected from many more units): no 
significant differences – only 1-2 variables affected 

In summary, this fault caused a very small amount of variables to show abnormality.  It can be 
detected using a component AFDD tool.  It is not a good representation of whole building faults.
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Details about the Mis-detected Faults
August 8, 2016: AHU-1 supply air temperature sensor was implemented with a positive 
bias (4 °F) from 10:22 to 21:16.

T2 of baseline data with similar 
weather and building operation

T2 of test day data

Fault period

AHU variables: 2 variables show abnormality

T2 of the whole building dataset is not significantly 
different from the baseline one
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Details about the Mis-detected Faults
August 8, 2016: AHU-1 supply air temperature sensor was implemented with a positive 
bias (4 °F) from 10:22 to 21:16 (cont.).

Chiller variables: no significant differences

VAV variables (selected from many more units): no 
significant differences – only 1-2 variables affected 

In summary, this fault caused a very small amount of variables to show abnormality.  It can be 
detected using a component AFDD tool.  It is not a good representation of whole building faults.
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