Advanced Hybrid Water-Heater Using Electrochemical Compression (ECC)

2017 Building Technologies Office Peer Review

Project Summary: Phase IIB SBIR

Timeline:

Start date: May 19th, 2014

Planned end date: May 19th, 2016

Key Milestones:

- 1. Develop advanced Metal Bi-Polar Plates for ECC's
- 2. Integrate New Membranes & MEA's
- 3. Build State of the Art Metal Hydride Heat Exchangers
- 4. Develop Advanced System Integration & Controls
- Meet ultimate cost targets
- Meet Long-term Durability Requirements

Budget:

2013 (2/2013 thru 11/2013)-Phase 1 - \$149,856.00 2014-2015-(5/2014 thru 5/2015)-Phase II - \$997,680 2016-2017-(8/2016-present) Phase IIB - \$408,922.39 Present – 8/2018 Phase IIB - \$ 576.110

Target Market/Audience:

Residential electric water heating.

Key Partners:

Xergy, Inc.

HAIER / GEA

Project Goal:

Develop a heat pump water heater utilizing electrochemical compression technology with an <u>installed cost</u> and real world efficiency that will enable widespread adoption in US residential markets

TRL:

Start: 7 End: 9 (system)

ECC + Metal Hydride Heat Exchangers System Efficiency

ECC + metal hydride heat exchanger, requires ultra dry compressed hydrogen – at controlled pressures

Compressor

Operating Point (0.05 V)

Heat Exchanger

Almost Reversible Reaction
Difference Between Curves is called
Hysteresis
< 5% Loss For "Right Hydrides"

ENERGY Energy Efficiency & Renewable Energy

Purpose and Objectives

Problem Statement:

- Heat pump water heaters can reduce energy use of electric hot water heaters by 66% +, but mechanical heat pumps are noisy and use high GWP refrigerants.
- Electrochemical compression (ECC) is a transformative solid state technology that can be applied to different refrigeration cycles for this application.
- ECC is

Variable	Efficient
Scalable	Noiseless with no moving parts

Target Market and Audience: Approximately 15% of electric demand is for hot water production using 1.4 Quads/yr.

Impact of Project:

- Near Term (1-3 years)
 - Demonstrate and produce high efficiency ECC HPWH at a price point viable for the US residential market
 - Potential of savings of 1 Quad/year
- Long Term (3+ years)
 - Experience will support ECC development to replace mechanical compressors in HVAC applications
 - Potential savings of 5 Quads/year

Approach – Key Components

Key Components:

- Polymer Electrolyte Membranes & Electrode
 Systems (MEA's)
- Cell Plate Designs
- Compressor (Stack) Assembly

Critical Requirements:

- COP > 3
- Unit price < \$500 at commercial volumes
- Low cell voltage leads to higher cell efficiency but lower cell pumping throughput
- Creating high volumes of low cost components is required to meet commercial unit targets

Approach

Goals of this program:

- Achieve system cost targets (high volume installed premium < \$500) by developing advanced cell components and manufacturing methods
- Achieve cycle performance target (COP>3) through advanced compressor and heat pump system integration
- Build and Demonstrate prototype and commercial system based on advanced components and design (50 gallon ECC HPWH)

Key Issues:

- Cost of ECC components
- Cost of MHHX system
- System integration (integrating heat exchangers, controls and seals)
- Long term performance

Distinctive Characteristics:

ECC driven heat pump water heater

Major Tasks and Accomplishments: Summary

Major Tasks

- Year 1: Develop, produce and integrate low cost advanced Metal Bi-Polar Plates
- Year 1: Develop, produce and Integrate New low cost Membranes & MEA's
- Year 1: Develop, produce and integrate advanced MHHX's
- Year 2: Develop Advanced System Integration & Controls
- Year 2: Meet ultimate cost targets
- Year 2: Meet Long-term Durability Requirements

Accomplishments

- Established Advanced Composite Membrane capability, now used for multiple DOE programs achieved cost reduction goals
- Established automated electrode and gasketing capability achieved cost reduction goals
- Achieved critical industry metrics for EC Compressor
- Built first prototype combined ECC + MHHX (Heat Pump) Hybrid Hot Water Heater

Working On

- Working on more advanced plate production capability
- Working on more advanced Metal Hydride production capability
- Working on system integration concepts
- Working on durability requirements

Progress and accomplishments: Membrane & Electrodes

- Ultra-thin, Ultra-strong, Ultra-high performance pilot scale continuous Composite membranes and MEA's production capability in SBIR II
- In SBIR IIB: Advancing MEA's production capacity further, with next generation robotic electrode production (no longer using transfer roll), and investing in more advanced membrane production capability
 - Able to process 'low cost' ionomers, very efficiently with high uniformity
- Established new strategic source for catalysts
- Current Production capacity literally hundreds / thousands of different types of MEA's a week

Progress and Accomplishments: ECC Components (Plates)

- Compression Molding Upper movable mold half Lower fixed mold half

- Developed prototyping, piloting and large scale plate production capability
- Note, stamping dies are not cheap, and ordered only when final designs are validated; this work is in process (plates have to be produced for pennies to achieve cost targets

Progress and accomplishments: Automation

- Robotic Gasket Application Systems installed in SBIR II
 - Gasket application upgraded new programming and temperature controlled facility
 - Able to finish literally hundreds/thousands of plates a week.
 - Quality Assurance systems are in place
 QA systems to test gasket/electrical integrity
- Robotic Electrode Production
 - Moved away from Roll to Roll Systems
 - Much higher accuracy especially with lower catalyst loadings
 - More efficient deposition, less waste
 - Customizable

7 Generations of ECC's

Commercial Sale (H2 compressors) Started

GEN 1 GEN 2 GEN 3 GEN 4 GEN 5 GEN 6 GEN 7

Single Cell H2O Multi-Cell H2O Graphite Multi- Graphite Plate
Cell – H2
H2O Internal
Metal Porting

16 St.

Metal Plate
- H2
3 x Smaller

Coatings Simpler System

Large Area 3 X Lighter

Commercial Sale (Water Compressor) Dais / ORNL

ECC Comparison to Industry Metrics @ Nominal 150 Watts (Cooling) – Current State of the Art

- 5th & 7th Generation, C Variant ECC, within 10% of best reciprocal compressor system!
- Next stage is to work on cost,
 (while improving performance)

Unit Description	weight (grams	volume (co
rotary	590	180
reciprocal	4313	2130
ECC Gen 5a	17520	2418
ECC Gen 5b	5760	2418
ECC Gen 7a	17568	2959
ECC Gen 7b	5776	2959
ECC Gen 7c	4728	2423

Progress and Accomplishments: Heat Exchangers

- Stopped buying Hydrogen storage units and set up in house MH Heat Exchanger production capability
- Set up Partnership with Delaware State University, that is a DOE center of excellence for Metal Hydride (and fuel cell) technology (>\$5 Mn in DOE investment at Del State)

Progress and Accomplishments: Deliveries

- Delivered 150 W (Water Compressor) to GE (SBIR II), and prototype Water Compressor for 7 Ton Chiller
- Assembled 7 generations of .4 L, and 4 L (150 Watt) Hydrogen compressors
- Built 50 Gallon (Hydrogen / MHHX) HHWH System & Testing (SBIR II)

Progress and Accomplishments

Lessons Learned: Packaging is 'the' critical issue

- New systems, Low Current densities and Low operating pressures,
 - imply creative designs / fluid flow considerations
 - imply mass transport limitations lead to large active areas (i.e. cost issues)

Market Impact:

- Target Market: Electric WH, approximately 50% of 8.5 million new WH
- Demonstrated Higher Efficiency cycles for ECC based HPWH
 - No GWP, No direct environmental impact, recyclable
 - Noiseless, vibration free operation
 - Project targets met payback period is less than 2 years
- Economic attributes are NOW compelling
 - Lower operating cost than even Gas Fired Water Heaters!
 - Thermal Battery a compelling case for utility /DOE 'push'

Awards/Recognition: GE Ecomagination Award 2011, Clean-tech Award Finalist 2012, Defense Energy Technology Challenge Finalist 2014

Project Integration and Collaboration

Project Integration: Xergy has

- Worked closely with GE project managers and engineers
- Established Strategic agreements with major (global) suppliers
- Sponsored related work at the University of Delaware

Partners, Subcontractors, and Collaborators:

- Xergy, Inc.
 - Dr. William Parmelee, PI, Xergy, Inc.
 - Bamdad Bahar, President Xergy, Inc.
- Haier / General Electric Appliances
 - Dave Beers, Manager, Heat Engines R&D

Communications: Currently have 30+ patents in process, presented numerous papers including ACEEE Hot Water Forum 2015/16, exhibited at Fuel Cell Seminar 2015, ECS 2015, AHR 2016, Art of Compression Colloquium 2016

Next Steps and Future Plans

- System integration is a critical issue much to be done
- Perform Endurance testing, validate long-term performance with Partners
- Consider integration projects with others in this space

Also, separately, engaging current capabilities to assist other DOE programs with membrane development

- New Anionic Composite Membranes & MEA's Partnered in 3 ARPA Awards: RPI/GT, UD, WU
- New Cationic Composite Membranes & MEA's UD

- Opportunities to leverage capabilities to develop business in other areas:
 - (Custom) Composite Membrane Production ARPA-E
 - Micro-Climate Control Systems Appliance Applications
 - Gas Sensors Commercial Applications
 - ILD Systems Commercial Applications
 - Advanced Metal Hydride Systems re-establish U.S. Capability & R&D

Spin Off Technologies ...

