Utility Perspectives on the Hydrogen Economy

Noah D. Meeks, Ph.D. Sr. Research Engineer Southern Company Services, Inc.

Research & Development

NREL H2@Scale Workshop Nov 16-17, 2016

America's Premier Energy Company

Southern Company Overview

- Providing clean, safe, reliable and affordable energy for customers and communities
- Developing the full portfolio of energy resources
 - Nuclear
 - 21st century coal
 - Natural gas
 - Renewables (solar, biomass, wind, hydro)
 - Energy efficiency
- Industry leader in energy innovation
 - Incubating new products and services at the Energy Innovation Center
 - Engaged in robust, proprietary research and development
 - Company-managed R&D investments totaling approximately \$2.1 billion since 1970

Renewables (SPC) Generation

Renewables Development

	2015	2030
Solar	 ~1GW of solar in SE footprint \$2-4/W 15-18% efficiency OpCos purchase 90% of their solar energy 	 10+ GW of solar in SE footprint \$1-2/W 20-25%+ efficiency OpCos own more than they buy
Wind	 <28% Capacity factor in SO footprint Hub height and rotor diameter limited by logistics 80-90m hub-height is typical, 100m is highest commonly used 110m rotors are largest typical All wind is imported 	 35%+ Capacity factor in SO footprint Advances in manufacturing and construction result in taller tower/longer rotors 140+m hub-height 140+m rotor diameter 3GW of wind in SE

Renewables growth (Oct 31st earnings call; subject to cautionary notes): **2016**: **\$4.4B investment** by SPC mostly in wind – peak renewables investment 2017+: target **\$1B/year wind (650 MW)** and **\$0.5B** other investments

Hydrogen Economy Drivers and Vision

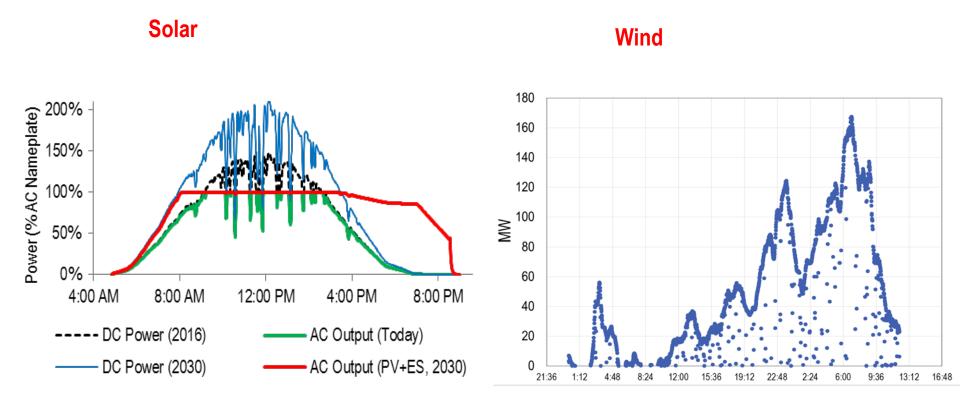
- Renewables require grid energy storage. 1)
- 2) Economy-wide decarbonization requires transportation decarbonization.

2014 carbon intensity by sector

- transportation 0.31 t/MBTU
- residential 0.05 t/MBTU
- commercial 0.04 t/MBTU
- industrial 0.05 t/MBTU

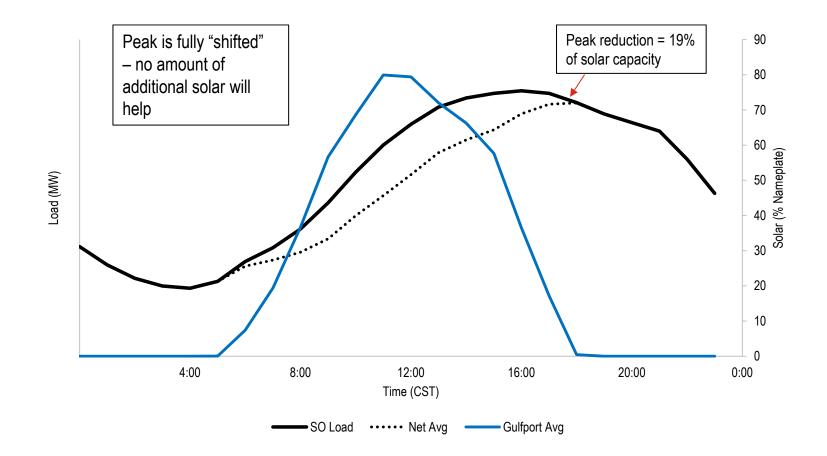
Hydrogen and electrons are preferred energy carriers in a zerocarbon future.

Zero-carbon electrons produced by:


- Nuclear
- Renewables
- Fossil with CCS

Hydrogen produced by:

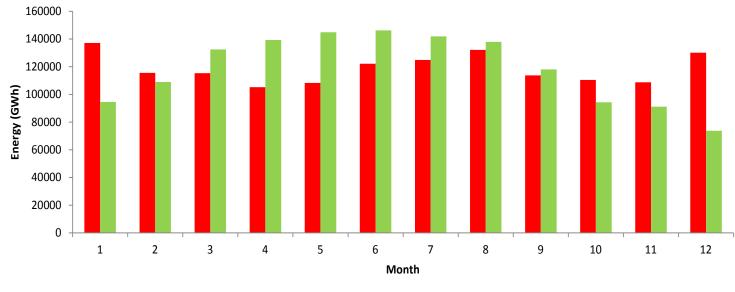
- Zero-carbon electrons
- Thermochemical water-splitting
- **Photochemical water-splitting**
- Thermal methane splitting
- **Biogas/biomass gasification**
- Fossil reforming/gasification with CCS



Grid must be balanced using reserves or storage

Solar has limited value for capacity

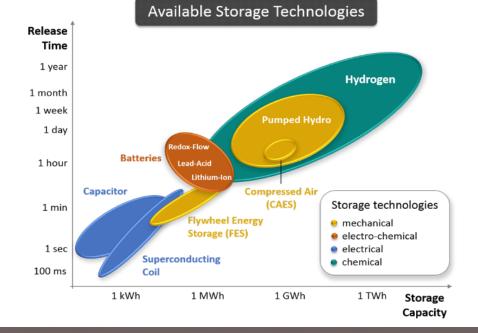
Opportunities for Renewables Energy Storage


Investment Tax Credits allow excess solar generation

- Incentivize solar which has limited capacity value
- Solar is least-cost to curtail when energy is not needed

Production Tax Credits demand excess thermal plant generation

- Incentivize energy production
- Shifts least-cost to curtail to thermal plants which have high curtailment costs


Renewables mis-matched with seasonal demand.

Grid Energy Storage

<u>Technology</u> Batteries	Round Trip Efficiency 95%	<u>response time</u> seconds	<u>Scalability</u> linear	small applications
Pumped Hydro	75%	minutes	volumetric	geographically limited
Compressed Air	25-70%	minutes	volumetric	may require pre-heating
Thermal - Physical	40%	mins to hours	volumetric	
Thermal - Chemical	40%	mins to hours	volumetric	
Hydrogen P2G	27-40%	minutes	volumetric	Options to store,
Hydrogen P2P	33%	hours	volumetric	move, or sell

D

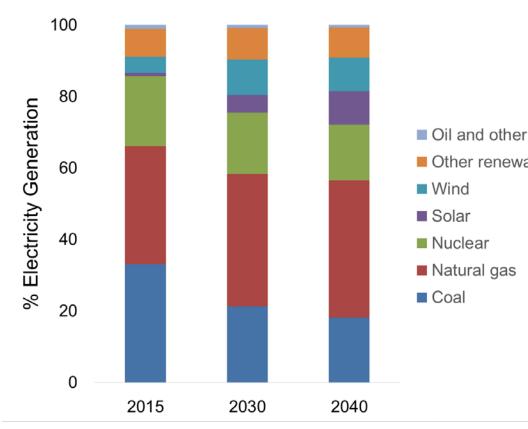
Figure 1: Energy Storage Technologies, Capacity, Timescale, and Applicability (Source: Hydrogenious (www.hydrogenious.com))

Hydrogen for Transportation (and pipeline energy transmission)

Critical parameter for transportation =

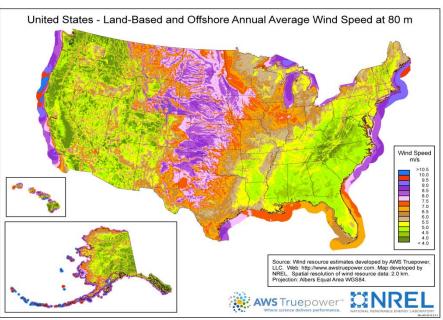
Battery pack: 85 kWh / 1323 lb = **0.064 kWh/lb** (**219 BTU/lb**)

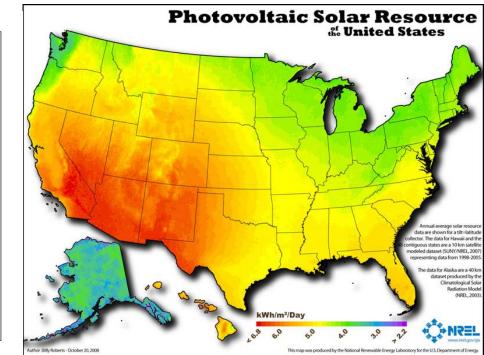
(Source: Car & Driver)


mass energy density (BTU/lb)

5 kg H_2 + 87.5 kg H_2 storage + 56 kg stack weight = 327 lb total power plant weight 568,000 BTU in the H_2 1736 BTU/lb thermal ~ 860 BTU/lb electrical (Source: InsideEVs.com)

EIA U.S. electricity grid projections


SMR H₂ production: 10 lb CO₂/lb H₂ \rightarrow 5100 BTU_{th}/lb CO₂ CH₄ combustion \rightarrow 8500 BTU_{th}/lb CO₂ CH₄ combustion \rightarrow 8500 BTU_{th}/lb CO₂ Electrolytic H₂ \rightarrow 19.5 lb CO₂/lb H₂ (67% efficient; 50 kWh/kg H2 required; ElA case: assuming Clean Power Plan is implemented)


Zero-carbon electricity generation required to drive carbon benefits from electrolysis.

Roles for Nuclear in Hydrogen Economy

- Nuclear provides zero-carbon electricity at scale today with low O&M (price certainty).
- Nuclear plants may be challenged in some ISO due to wind PTC.
- Southeast has less renewable resource
- Nuclear power EROI is stronger.

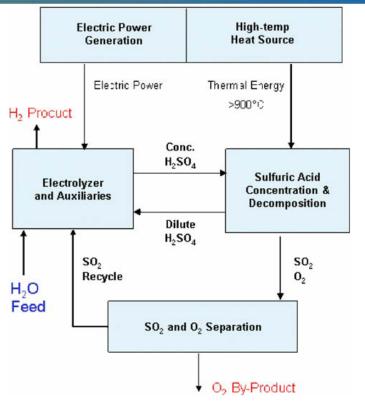
High temperature Nuclear Reactors

High Temperature Gas Reactor (HTGR)

- Cooled with high pressure helium
- 850 °C

Molten Salt Reactor

- Fast reactor \rightarrow high fuel utilization \rightarrow security
- Low pressure and molten salt \rightarrow safety
- High temperatures \rightarrow efficiency



Thermochemical Water Splitting

 $2 H_2 O \rightarrow 2 H_2 + O_2$

mediated by thermochemical cycle

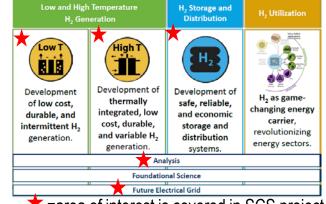
- Metal metal oxide
- Copper copper chloride
- Sulfur iodine
- Hybrid sulfur (electricity and heat used)
- 300+ other cycles

- Utilization of both heat and electrons
- 2 steps 3 unit operations
- All fluid phases

Liquid Hydrogen Carriers

	Wt% H2	Energy density kWh/L	
Liquid Organic	16	9.7	
Biodiesel	14	9.2	
Methanol	12.6	4.67	
Ethanol	12	6.3	
Formic acid (88%)	3.4	2.1	
Ammonia	17.8	4.32	
Liquid Hydrogen	100	2.54	

Electrolysis Demonstration in the Southeast



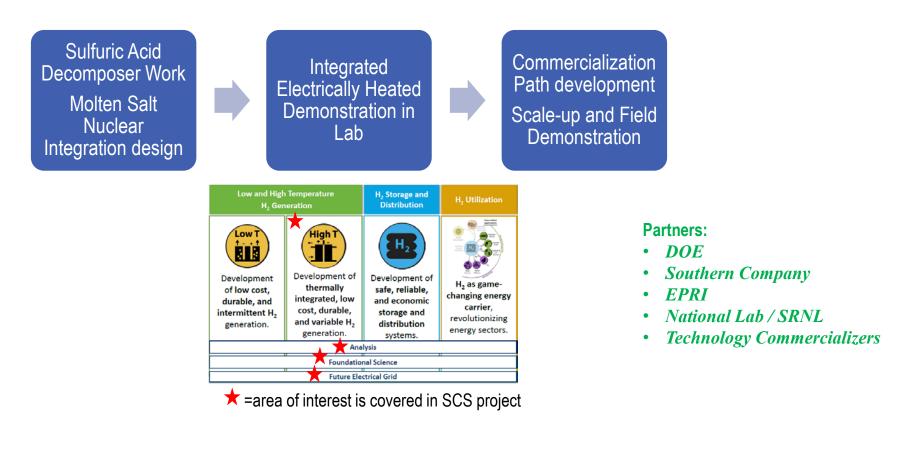
Fleet trucks

=area of interest is covered in SCS project Partners:

- DOE
- Southern Company
- **EPRI**
- Southern Research
- National Lab / NREL
- **City of Birmingham**
- **Electrolysis and Fuel cell makers**

Electrolysis Test Bed • PEM • High Temp • High Pressure Solid oxide EC

• Adv. Electrolysis and electrochemistry


Storage & Handling • Hydrogen • Liquid Organic • Metal

Phosphoric acid

- Solid Oxide • PEM

Hybrid Sulfur Thermochemical Demonstration

Conclusions

- Hydrogen may meet energy storage need and present opportunity for renewables
- Efficiency and energy density of nuclear drives it as a dominant zero-carbon electricity generation
- Advanced nuclear includes option for hydrogen from heat
- Hydrogen or liquid H₂ carriers allow for high density energy transmission
- Hydrogen has energy density required for transportation
- SCS pursuing industry-led demonstrations

Questions?

Noah D. Meeks, Ph.D. NDMEEKS@SOUTHERNCO.COM

1-205-257-6136

