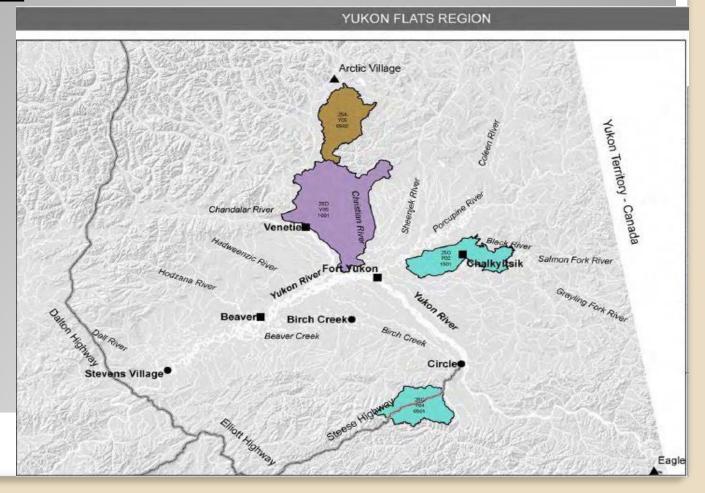


Gwichyaa Zhee Gwich'in Tribal Government

Gwich'in Solar and Energy Efficiency in the Arctic

Dept of Energy Tribal Energy Review Denver, CO Nov. 16th 2016


Dave Messier – Tanana Chiefs Conference, Rural Energy Coordinator on behalf of Gwichyaa Zhee Gwich'in Tribal Government

Yukon Flats

Yukon Flats Region:

- Arctic Village
 - \$10/gal
 - \$.8/kWh
- Venetie
- Circle
- Beaver
- Stevens Village
- Chalkyitsik
- Birch Creek

Gwichyaa Zhee Gwich'in Tribal Government (GZGTG)

Gwichyaa Zhee Gwich'in Tribal Government is a sovereign tribal government located in the Yukon Flats region of Alaska.

MISSION: "The Mission of the Gwichyaa Zhee Gwich'in Tribal Government is to exercise governmental authority to promote economic and social development, advocate and secure tribal rights, to secure tribal lands, to enhance educational opportunities and to protect traditional cultural values with a unified voice on behalf of our tribal members."

Gwichyaa Zhee Gwich'in Tribal Government (GZGTG)

Gwichyaa Zhee Gwich'in Tribal Government manages 17 full time employees over 10 different program areas:

- Indian Child Welfare Act Program (ICWA) Dept with 4 tribal judges
- Tribal Transportation Program
- Education & Employment Dept
- Elders Nutrition Program
- Environmental Program
- Tribal Housing Authority
- Natural Resources Dept
- Realty Dept
- Finance Dept
- Admin & Operations Dept

Fort Yukon Energy

Some of the Highest Energy Costs in the Nation

Electricity:

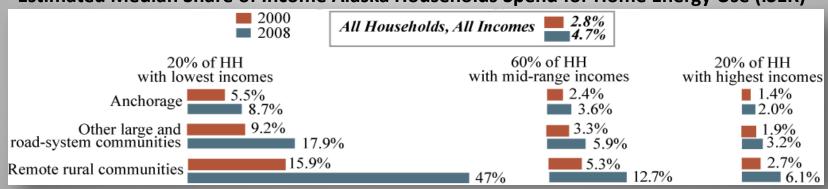
\$.66/kWh (500% HIGHER than the national avg of \$.11/kwh)

Heating Fuel:

\$6.50/gal for diesel \$300/cord of wood

Transportation

\$7.50/gal for gas


Energy Challenges (OR Opportunities)

Electrical Use:

PCE report- In 2015 GZ Corporation, the local utility burned 204,218 gal of diesel for electrical production (\$1.2 million/yr)

Avg Efficiency: 13.31 kwh/gal of diesel Fuel costs account for 73% of the cost/kWh

Estimated Median Share of Income Alaska Households Spend for Home Energy Use (ISER)

Energy Challenges

Transportation:

- Effects on Subsistence Activities
- Increase cost of travel to/from villages
- Increases Cost of Goods in the Village
 - \$10/gal for milk average

Project goals

 Reduce the Gwichyaa Zhee Gwich'in Tribal government's dependence on imported diesel fuel to run Tribal Operations and Services

 To serve as a model of sustainability for our youth and our surrounding communities, so that they may follow where we

have led

 To lower operating costs and improve economic sustainability of GZGTG

TCC Region Energy Model

1. Collect Data & Plan!

2. Efficiency First

3. Renewable Energy (BIOMASS! SOLAR!)

Energy Opportunities

Energy Savings Break-Down	Space Heating (Gal of Diesel)	Electricity (Kwh/Diesel)	Total Gallons of Diesel
Tribal Building Fuel Oil Consumption 2012	2,493gal	30,847kWh/2,387gal	4,880 Gal
Potential Reduction	786gal	19,805kWh / 1,533 gal	2,319 Gal
Potential \$ Saving	\$4,716	\$13,071	\$17,787/yr
Percentage Decrease in GZG Tribal Gov't Fuel Consumption	31.5% Reduction	65.2% Reduction from solar array and Lighting upgrade	48% overall Reduction in Fuel Use

Project Components

Components

1. Install 18kW solar PV array on tribal office

2. Increase insulation throughout the tribal office attic

3. Replace inefficient florescent lighting with LED lights

COMPLETED

STATUS

COMPELTED

EFFICIENCY FIRST -Attic Insulation

Space Heating Conservation:

BEFORE..

EFFICIENCY FIRST -Attic Insulation

Space Heating Conservation:

After...

LED Lighting Retrofit

LED lighting Retrofit:

Convert Existing t8 lighting fixtures to 17 watt LED

LED Lighting Retrofit

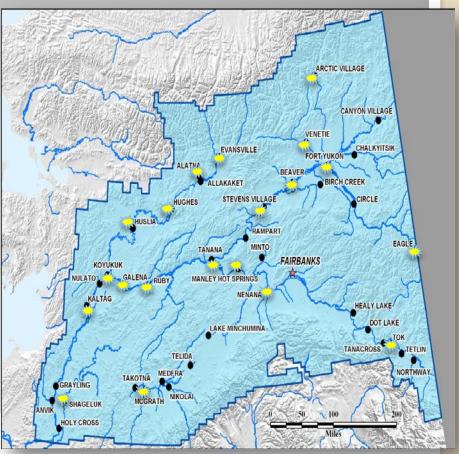
Client Name Gwichyaa Zhee Gwich'in Tribal Government Address: 3rd and Alder St Fort Yukon, AK 99740

Walter Peter Jr. GZGTG Housing Director

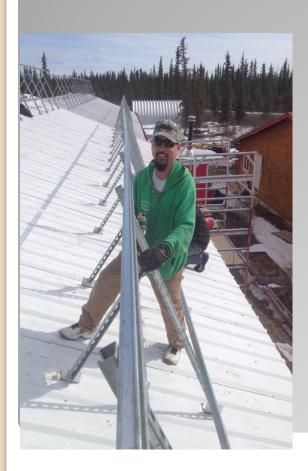
LED lighting Retrofit:

Convert Existing t8 lighting fixtures to 17 watt LED

Attn:


Total Yearly Electrical Savings: \$3,088

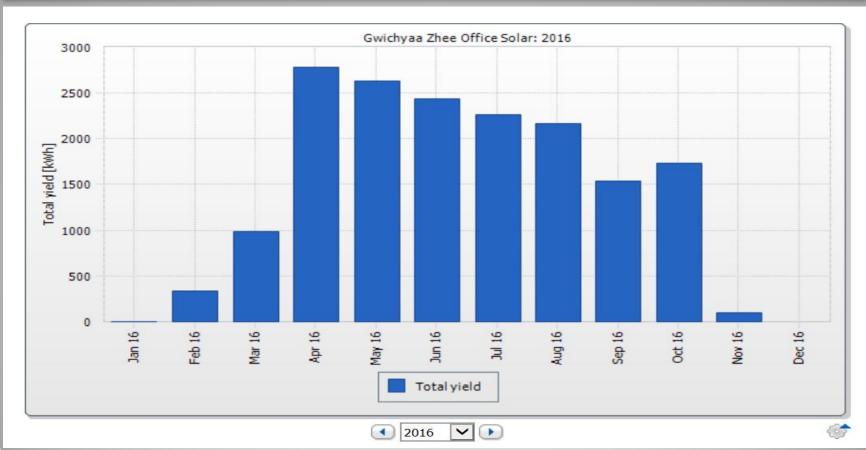
Lighting Payba	ack								
Average Utility Rate (\$/		0.66		Material Cost	Per	fixture:		\$6	9
kW Demand Charge:		0		Labor cost/hr	11			\$	0
Billing Category:	GS-2			Bulbs/hr:	,				1
Typical Hrs/week lights	are o	50		Average LED	life e	expectancy (h	rs):	50,0	00
# of bulbs being replace	ed:	120							
Wattage of current bull	b	32							
Wattage of LED bulb		17							
NOTE CHANGING ANY	OF THE PAR	AMETERS ABO	VE THIS LINE	WILL EFFEC	ГТН	E ENTIRE SPR	EADSH	EET	
LED light Sa	avings								
Current Lighti	ng								
kw \$/kWh	\$/bulb/h	nr # bulbs	2	Hrs/yr		kWh Use		Total Cost	/yr
0.032	0.66	0.02112	120	2,600	=		9984	6589.	44
LED replaceme	ent Light	ting							
kw \$/kWh	\$/bulb/h	nr # bulbs	5	Hrs/yr		kWh Use		Total Cost	/yr
0.017	0.66	0.01122	120	2,600	=		5304	3500.	64
Total Yearly E	lectrical	Savii \$3	3,088.80						
Payback on bu	ılbs (yrs	<u>):</u>	2.67						
Lifetime Savin	ener.	45	1,144.00						
Litetime Savii	IUS:	<u>90</u> .	-/						
Yearly kWh Sa		33,	4680						



Solar in Alaska Vs. Germany

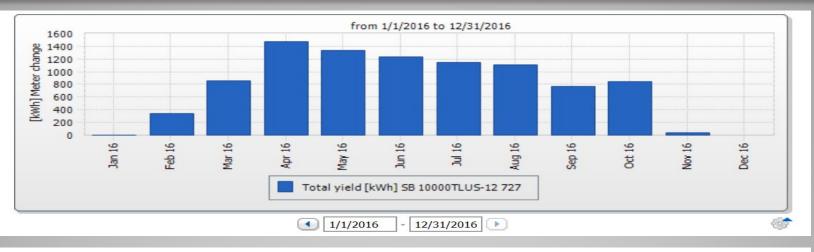
Photovoltaic Solar Resource: United States - Spain - Germany Arrad diverse sold research data with a sold recollector exerted toward the sold in the foliar for these and the sold configurate shallow an exact sold and an interest sold as a first sold recollector exerted toward the sold interest. The sold introde. The other for the sold introde the sold into the sold introde the

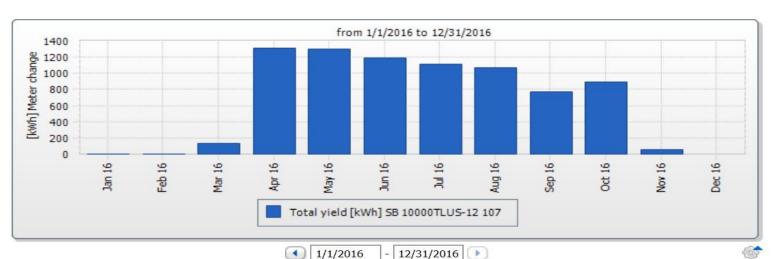
100% Local Labor (Plus Dave)



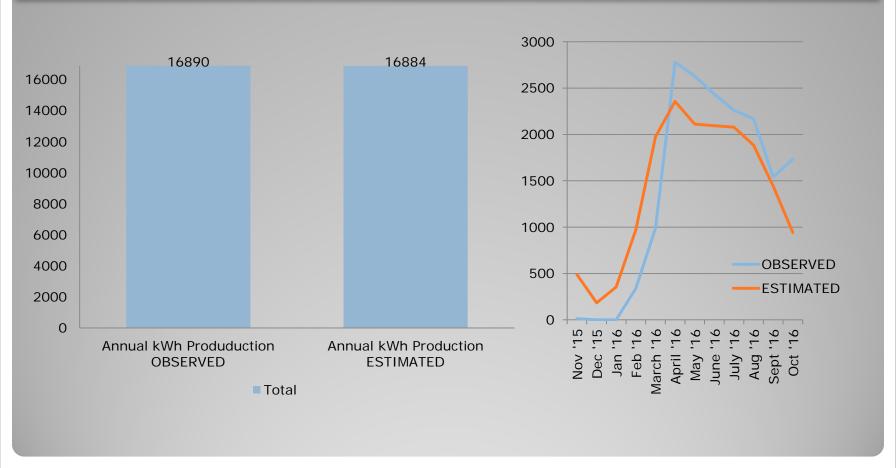
PV Watts

- Est: 16,890 kWh/yr of electrical production
- \$3.5 -\$4/watt installed → ~\$2.5/watt equipment, \$1-1.5/watt labor +shipping
- Estimated yearly electrical offset: \$11,338





"....If you don't got data, you don't got nothin"



Why the difference between inverters? (~1000kWh per year)

"....If you don't got data, you don't got nothin"

RESULTS:

Tribal Office Energy Use

BEFORE

Average Electrical Cost '13- '14: \$19,927

Heating Fuel Used '13: 2,098 gal

<u>AFTER</u>

Electrical Cost '16 (Nov/Dec Estimated): \$6,416

Heating Fuel Used '16 (Estimated): 1,200 gal

ELECTRIC COST 68%

%

Fuel Use 35%

Outreach to Students

Education and Outreach

The Energy Avengers... and Future Energy Avengers...

Main Take-Aways

"We cannot solve our problems with the same thinking that we used when we created them"

-A. Einstein-

- 1. Local/Cheaper Energy → Sustainable Communities
- 2. Energy is Expensive, Cheaper to Conserve than to Produce
 - LED lighting
 - Insulation is SEXY
 - Always share the information with youth and project partners
- 3. Renewables are only a part of the solution, but hey, this stuff works well!

1. Collect Data and Plan

2. Efficiency First

3. Renewable/ Local Energy

Contact Information

Mahsi Cho! (Thank you!) Dept of Energy!

Dave Messier
Rural Energy Coordinator
Tanana Chiefs Conference
Dave.pm@tananachiefs.org
907-452-8251

