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An integrally geared compander is composed of pinions 
having compressors and turbines geared to a common shaft 

Low speed 
driver/generator 
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An IGC allows for an interesting power block concept for 
S-CO2 Brayton cycles and alternative cycles 
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• Pinions may rotate at 
different speed to 
allow for improved 
stage efficiencies 

• IGC commonly 
employ flow control 
features  
– Inlet guide vanes 
– Variable diffuser 

vanes 
– Variable nozzles 

• Intercooling and 
reheating are easily 
implemented 
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Turbines 

Typical IGC Package 

Conventional Turbomachinery Train 

• Compressor, re-compressor, turbine and gearbox are assembled in a single compact core. 
• The second gearbox, additional couplings and housings in the conventional train can be 

eliminated 
• Simple IGC package can potentially reduce costs by up to 35% 

An IGC package incorporates all the key elements of a 
conventional train in a compact modular package 

(Based on very little concrete data) 



Project objectives and key milestones 

• Design a 10 MWe cycle using a compander as the 
power block (targeting 50% at design point) 

• Investigate off-design cycle operation, wide-range 
compression capabilities, and control schemes of 
an IGC based power block 

• Design a reduced flow IGC to be tested in SwRI’s 1 
MWe test loop. 
– Full flow wide-range compressor (50-70% range) 
– Reduced flow expander (705°C inlet temperature) 
– Full frame core (900$/kWe, 6¢/kWe

 LCOE) 

• Test the unit at full temperature and pressure 



Work has been divided into three project phases 

• Phase I – Cycle modeling, turbomachinery and 
loop design 

• Phase II – IGC fabrication and loop 
construction 

• Phase III – Loop and IGC commissioning and 
full pressure and temperature testing 



A simple recompression cycle at 55° was chosen as a 
“representative baseline” for proposed CSP SCO2 cycles 
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Single stage turbine reheating (after S2) was added and 
an efficiency gain of 0.5-1% was noted 
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Intercooling plus reheating showed similar trends with 
further improved efficiencies for higher pressure ratio cycles 
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Optimal efficiency and  cycle configuration is 
dependent on a number of variables 
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Comparison of Recompression Cycle Configurations
Best Efficiency at 55 ° C Compressor Inlet Temp

No Reheat or Intercooling
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Intercool Plus 3 Stages of Reheat

• Pressure Ratio 
(PR) 
– Optimal PR 

varies with cycle 
configuration 

– Intercooling 
favors higher PR 

• Turbine Reheat 
– Single stage 

improves 
efficiency 0.5-1% 

– Pressure drops in 
reheater reduce 
cycle efficiency 
for multiple 
stages of reheat 

 



The transient challenges of a concentrated solar power 
plant are significant 
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Is high peak cycle efficiency really the target? 

• SAM modeling of typical sites 
shows an annual average 
compressor inlet temperature 
to be 37-38ºC assuming 15ºC 
approach temperature in the 
cooler 

• Cycle Modeling 
– Optimal flow split 

• 22-33% 
• Heavily dependent on CIT 

– Optimal PR 
• Varies with use of intercooling 

– Intercooled cycles are more 
efficient on hot days, and 
less efficient on cool days 
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Wide-Range impeller operation is essential to 
optimizing cycle efficiency 

• Range Requirements at Optimal 
Efficiency Condition (without 
using range reduction 
techniques) 

– Compressor > 55% 
– Recompressor > 37% 

• Control Strategies 
– Alter flow split and pressure 

ratio to reduce compressor 
requirements 

– Control compressor inlet 
temperature 

– Employ inlet guide vanes 
 

16 

0
10
20
30
40
50
60
70
80
90

0.0 0.2 0.4

Po
ly

tr
op

ic
 H

ea
d,

 k
J/

kg
 

Volume Flow, m3/s 

Main Compressor - No Intercooling

Recompressor - No Intercooling

Main Compressor - Intercooled

Recompressor - Intercooled

Typical Compressor 
Head-Flow Characteristic 

 



IGVs may be essential to maximize off-design efficiency for 
varying compressor inlet temperatures 

• Inlet Guide Vanes 
– Can be actuated to 

produce similar 
head flow 
characteristics as 
required to obtain 
an optimal solution 

• Alternate 
strategies also 
exist 
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Impact of LCOE vs. Scale shows a sweet spot for CSP in 
the 50-200 MW plant size 

• SAM Model  
– Started with FOA 

requirements 
– Input target comp. 

efficiencies and 
expected PB cost 

 

20 

Key Parameters Targeted by FOA Key Financial Parameters from SunShot 
Design HTF inlet temperature (°C) 720 Inflation rate (%/year) 3 
PHX temperature difference (°C) 15 Real discount rate (%/year) 5.5 
ITD at design point (°C) 15 Internal rate of return target 15% 
Rated cycle conversion efficiency 50% IRR maturation (years) 30 
Power block cost ($/kW) 900 Loan duration (years) 15 
Heliostat field cost ($/m2) 75 Loan percent of total capital cost 60% 
Thermal storage cost ($/kWhth) 15 Loan annual all-in interest rate 7.1% 

Receiver Tower and Solar 
Reception become Burdensome 

Cap-ex/Produced 
Power Excessive 

LCOE → 6.6 ₵/kWh 



LCOE Optimization shows that the most likely path for 
CSP commercialization is to incorporate fossil assist 
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Investigated system models show promising trends 
with fossil assist 

• Four plant configurations were found having a 
good combination of solar output and LCOE 
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Size (MW) 100 40 100 100 
Annual generation (MWh) 768,037 310,815 550,754 454,993 
Annual operation time 99.87% 99.69% 74.16% 63.18% 
Percent power from fossil 36.52% 66.10% 18.09% 0.00% 
Thermal storage (hrs) 12 0 12 14 
Fossil fill 

All Day/All Year 
All Day/All Year Daytime/Sum

mer 
None 

Fossil backup cost ($/kW) 50 50 50 0 
Power block cost ($/kW) 800 925 800 800 
Real LCOE (¢/kWh) 4.95 5.90 6.00 6.67 
Nominal LCOE (¢/kWh) 6.80 8.10 8.24 9.16 
Annual fuel use (MMBTU) 1,899,547 562,362 966,168 0 

Annual CO2 emitted (kg/MWh) 181.5 328.0 93.0 0 

Average Ambient Temp. (°C) 19.9 19.9 22.9 23.4 



An IGC allows for an interesting power block concept for 
S-CO2 Brayton cycles and alternative cycles 
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