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Project	Objec'ves	

•  Develop	novel	modeling	capability	for	understanding	reflector	
degrada<on	that	combines	a	reac<on-diffusion-op<cs	
formalism	with	experiments	to	iden<fy	underlying	rates	and	
mechanisms	for	degrada<on	

•  Create	and	disseminate	a	tool,	validated	by	tes<ng	against	
mul<ple	experiments,	that	can	be	used	by	the	CSP	community	
to	evaluate	degrada<on	mechanisms	

Time	
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~30	yr	
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Micro-kinetic Description  

Intrinsic material property characterization 

Transport Optical 
Damage 

Mechanical 
Property 

Accelerated Aging 

Individual	Component	Layer	

Characterize	
single	layers	

or	a	
simplified	stack	

  
σ c = σ c (nC,nbl ,nOx,nH2O

,T )

  

∂nC(r,t)
∂t

= DC∇
2nC(r,t)− α(λ)Iλ (r,t)dλ nC(r,t)− n*(r,t)− nbl (r,t)⎡

⎣
⎤
⎦∫

∂n*(r,t)
∂t

= D*∇
2n*(r,t)+ α(λ)Iλ (r,t)dλ∫ nC(r,t)− n*(r,t)⎡

⎣
⎤
⎦ − kOxnOx(r,t) ⋅n*(r,t)

∂nbl (r,t)
∂t

= +kOxnOx(r,t) ⋅n*(r,t)

∂nOx(r,t)
∂t

= DOx∇
2nOx(r,t)− kOxnOx(r,t) ⋅n*(r,t)+S(r,t)

Iλ (r,t) = Iλ (z = 0,t)exp[
−α (λ) nC (z,t)−n* (z,t)⎡⎣ ⎤⎦dz

0

L

∫
]

Simplified	example	photo-kine<c	scheme	

  
αλ = αλ (nC,nbl ,nOx,nH2O

,T )

  
D = D(nC,nbl ,nOx,nH2O

,T )

  kOx = kOx(nC,nbl ,T )

  k = k(T,P)

  nOx(0,t) = kPOx

Project	Approach	
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Project	Approach	

•  Create	and	validate	models	and	sodware	to	predict	and	
understand	degrada<on		of	advanced	reflectors	spanning	
decades	
•  Op<cs,	reac<on-diffusion	kine<cs	solver	(feedback)	
•  Finite	element	mechanical	modeling	
	

Op<cs	
(full	Helmholtz)	

Kine<cs/transport	
(split	operator)	

Mechanical	modeling	
delamina<on,	cracking,	etc.	

(FEM)	
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Op'cs	solver	

•  Transfer	matrix	method	for	1D	reflector	stacks	
•  Fully	vectorial	(s	and	p	polariza<on)	
•  Numerically	exact	for	piecewise	constant	stacks	
•  Exact	reflectance	without	need	for	upwinding,	boundary	
elements,	etc.	(3D	version:	boundary	elements)	
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Kine'cs-transport	solver	

Transient	measurement	of	permeability	
of	PET	film	to	water	

Delayed	onset	consistent	with	non-Fickian	diffusion	
Dual	sorp<on:	

!"
!" = !!

!
!"

1
1+ ! !!!!

(1+ !!!!)!

!"
!"  

Non-linearity	in	transport	and	sorp<on	
requires	novel	solver	for	boundaries	

Figure 3: Four domains sharing a singe interface in the structured finite vol-
ume formulation. Many domains meeting at a single interface adds little or no
di�culty to the use of the proposed interface residual method.

To handle an arbitrary number of subdomains, we first recall that we can
write a set of equations of the form (50) for the ith subdomain,
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So we have the interior nodes in terms of the ghost nodes,
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The interface residual can be set up on a pairwise basis. From Figure 3 we

18
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Kine'cs-transport	solver	

Transient	measurement	of	permeability	
of	PET	film	to	water	

Delayed	onset	consistent	with	non-Fickian	diffusion	
Dual	sorp<on:	

!"
!" = !!

!
!"

1
1+ ! !!!!

(1+ !!!!)!

!"
!"  

We	have	extracted	permeability	as	
a	func<on	of	RH,	T	and	Pox,T	for	PET,	
PMMA,	with	and	without	oxide	
coa<ngs	

P	=	 !! + !!! !!!/!  
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Mechanical	proper'es:	UV	degrada'on	of	
poly(ethylene	terephthalate)	films	
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Aged	films	show	minimal	change	in	
elas<c	constants,	drama<c	reduc<on	in	

ul<mate	failure	strain	
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Mechanical	proper'es:	Fracture	of	briIle	coa'ngs	on	
strained	PET	films	

11	

•  Tensile properties of  TiO2/PET thin film system 
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Ø  Tensile load is transferred through the polymer substrate. 

Ø  Coated sample shows an earlier yielding. 
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Mechanical	proper'es:	Fracture	of	briIle	coa'ngs	on	
strained	PET	films	

12	

•  In situ tensile test shows progressive cracking behavior 

50 µm 

2.5% 

9.9% 

12.8% 

18.2% 

Tensile direction 

Parallel crack 

Buckle 



energy.gov/sunshot	energy.gov/sunshot	CSP	Program	Summit	2016	 13	CSP	Program	Summit	2016	

Mechanical	proper'es:	Fracture	of	briIle	coa'ngs	on	
strained	PET	films	

13	

•  Tape test shows delamination of  TiO2 for UV aged sample 
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Mechanical	proper'es:	Fracture	of	briIle	coa'ngs	on	
strained	PET	films	

14	

•  In situ tensile test shows progressive cracking behavior 

50 µm 

2.5% 
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18.2% 

Tensile direction 

Parallel crack 

Buckle How	do	fracture	and	delamina<on	change	with	aging?	
	

Is	there	an	underlying	kine<c	model?	
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Aging	of	simplified	reflector	stacks	

15	
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Aging	of	simplified	reflector	stacks:	Un-aged	

16	
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Cau<on:	there	is	not	necessarily	“canonical”	silver	

Our	models	now	have	“thin”	and	“thick”	NREL	silver	op<cal	constants	



energy.gov/sunshot	energy.gov/sunshot	CSP	Program	Summit	2016	 17	CSP	Program	Summit	2016	

Aging	of	simplified	reflector	stacks:	Un-coated	

17	

Degrade	samples	under	
condi<ons	of	45	C,	40%	RH	2X	
sunlight	(or	dark)	
	
Hemispherical	R	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

250	 750	 1250	 1750	 2250	

Re
fle

ct
an

ce
	

Wavelength	(nm)	

5592-28-2,	Cu(10)/Ag(500)	

5592-28-2-1	

5592-28-2-1	30	hours	

5592-28-2-1	60	hours	

5592-28-2-2	

5592-28-2-2	30	hours	

5592-28-2-2	60	hours	

5592-28-2-2	90	hours	

5592-28-2-3	

5592-28-2-3	30	hours	

5592-28-2-3	60	hours	

5592-28-2-3	90	hours	

5592-28-2-4	

5592-28-2-4	30	hours	

5592-28-2-4	60	hours	

5592-28-2-4	90	hours	

Substrates/Condi<on	
1	-	Glass	/	Light	
2	-	Glass	/	Dark	
3	-	3mil	PET	/	Light	
4	-	3mil	PET	/	Dark	

Silver	degrades	differently	in	the	dark	than	under	illumina<on	



energy.gov/sunshot	energy.gov/sunshot	CSP	Program	Summit	2016	 18	CSP	Program	Summit	2016	

Aging	of	simplified	reflector	stacks:	Un-coated	

18	

Degrade	samples	under	
condi<ons	of	45	C,	40%	RH	2X	
sunlight	(or	dark)	
	
Hemispherical	R	

Silver	degrades	differently	in	the	dark	than	under	illumina<on	
Reflectance	changes	differently	with	Ag	thickness:	thin	film	interference	
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Aging	of	simplified	reflector	stacks		

19	

Iden<fy	what	is	being	formed	with	a	combina<on	of:	
•  Variable	angle	spectroscopic	ellipsometry	
•  Rutherford	backscaPering	
•  X-ray	photoelectron	spectroscopy	
•  Specularity	and	roughness	measurements	

	
Iden<fy	relevant	<me	scales	and	plausible	kine<c	models	

•  	 Forward	predict	chemical	changes	and	compare	to	exp’t	
	
Ongoing	work	to	correlate	chemistry/material	iden<ty	with	
op<cal/mechanical	proper<es	to	build	predic<ve	model	
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Silver	corrosion	kine'cs:	Insights	from	the	literature	

20	

•  Quan<ta<ve	extrac<on	of	silver	sulfida<on	kine<cs	with	
reac%on/advec%on	model	of	degrada<on	of	silver	in	
denuder	tube	

FIG. 6. Photographs of Ag foils after 48 h exposure to corrosion-chamber air. Foil leading 
edge on the left. Flow rates through tube (cm3(STP) s-l): (a) 51.8, (b) 27.3, (c) 14.3, 

(d) 7.67, (e) 3.83. 

1187 

2Ag	+	H2S	+	½	O2	->	Ag2S	+	H2O 			

Input	gas	mixture	
Fixed	flow	rate	

Exi<ng	gas	mixture	

Volpe	et	al.,	Corrosion	Science	10,	1179-1196	(1989)		
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Silver	corrosion	kine'cs:	Insights	from	the	literature	

21	

•  Quan<ta<ve	extrac<on	of	silver	sulfida<on	kine<cs	with	
reac%on/advec%on	model	of	degrada<on	of	silver	in	
denuder	tube	

Flow	rates:	3.83,	7.67,	14.3,	27.3,	51.8	cm3(STP)/s		

Volpe	et	al.,	Corrosion	Science	10,	1179-1196	(1989)		

2Ag	+	H2S	+	½	O2	->	Ag2S	+	H2O 			
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Silver	corrosion	kine'cs:	Insights	from	the	literature	

•  Light	dependence:	are	we	photolyzing	O3?	
•  Are	we	making	Ag2O,	AgO	

•  Evolu<on	of	AgxO	to	Ag2O	(aging)	as	more	oxide	forms?	

•  Are	we	forming	a	heterogeneous	mixed	layer	of	oxides	
and	sulfides?	Chlorides?	
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Summary	and	Outlook	

23	

•  Central	hypotheses	
•  Fundamental	chemical	events	can	be	measured	and	
mechanisms	inferred	

•  Predic<ve	models	can	be	constructed	based	on	these	
measurements	

•  Measurements	show	complex	degrada<on	kine<cs	even	
for	simplified	geometries	and	materials	
•  Q:	Is	full	chemistry	needed?	Can	one	get	away	with	a	
simplified	pseudo-chemistry?	

•  APen<on	to	roughening/loss	of	specularity	
•  Combined	op<cs/kine<cs/transport	code	to	be	made	

available	to	the	community	


