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Webinar content

 What is hydrogen at scale?

* Why is it needed?

 Why now/today?

 What can it accomplish?
 How will it be accomplished?

 Why government, national labs, academia,
and industry are all needed?

e What does success look like?



Several factors impacting ‘status’ of H2

* Hydrogen is not new.
o Has seen ups and downs

o Most have a preconceived opinion, but complexity
of hydrogen and changing environment present
challenges

* Hydrogen is different
o Perception (incl. Safety)
o Infrastructure (cost)

* Lack of champion(s) (established revenue)



H, “Fun Facts”

* H,:
— Has 10 million metric tons of domestic
production (gasoline, fertilizer)

— This is 2% of US energy and is approximately
equal to solar and wind combined today.

— Has over 1600 miles of pipelines in the US

— Has been used in over 1000 fuel cell vehicles with
several million miles of vehicle travel

— Has fueling stations for vehicles open to the
public in the US today



H, at Scale a National Lab led ‘Big Idea’

* ‘Big Ideas’ are identified by National Lab
teams as high impact areas that are currently
underemphasized or lacking within DOE
portfolio

* Culminated in a DOE/National Lab Big Idea
Summit (April 21-22, 2016).

* Major opportunity for H, visibility and
applications across sectors alighed with
Climate goals
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Key Driver- Paris Agreement at COP 21

“Let that be the common purpose here in Paris. A
world that is worthy of our children. A world that is
marked not by conflict, but by cooperation; and
not by human suffering, but by human

progress. A world that’s safer, and more
prosperous, and more secure, and more free than
the one that we inherited. Let’s get to work.”

- President Barack Obama at the launch of COP21

PARIS2015
COP21-CMP11



Why hydrogen?.....Our Energy System
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H,@Scale enables green processes and increased renewable penetration that

Decreases all U.S. carbon
emissions by about half (2050)
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Energy System Challenges

* Multi-sector requirements Over half of U.S. CO,
emissions come from

o Industrial the mdus.trlal and
o Grid transportation sectors

o Transportation

Denholm et al. 2008
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Why now? Carbon-free electricity prices
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Limitations of Mismatched Load/Generation

Denholm, P.; M. O'Connell; G. Brinkman; J. Jorgenson (2015) Overgeneration from Solar Energy in California: A Field Guide to the Duck Chart. NREL/TP-6A20-65023
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Curtailment will lead to an abundance of low value electrons, and we need
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Example: Germany already limiting RE penetration rate

Share of Renewable Electricity
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Conceptual H, at Scale Energy System*

Value Added
Applications

Hydrogen/
Natural Gas
Infrastructure

Electricity
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*Illustrative example, not comprehensive



Current Energy Flow

Estimated U.S. Energy Use in 2014: ~98.3 Quads \ hg\{}l;%g(l:i;.é\gﬁrarpoor;e
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Source: LLNL 2015. Data is based on DOE/EIA-0035(2015-03), March, 2014. If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore Naticnal Laboratory
and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports
consumption of renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant "heat rate." The efficiency of electricity production
is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 65% for the residential and commercial sectors 80%
for the industrial sector, and 21% for the transportation sector. Totals may not equal sum of components due to independent rounding. LLNL-MI-410527



Current Energy Flow - w/Hydrogen

2014 Estimated U.S. Annual Energy Use - - Iﬁa\{\_frentlzﬂ.ti)ventnore
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Please note, all results presented on this slide are PRELIMINARY and may be subject to corrections and/or changes. A cursory
analysis was performed using available information and estimates of impacts due to changes to the modeled energy systems.



Energy Flow 2040 Business as Usual

2040 EIA AEO Estimated U.S. Annual Energy Use - L IﬂawrentI:eL Ll;vennore
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Source: LLNL March 2016. Data is based on DCE/EIA-0035(2015-03) and Annual Energy Cutlook DOE/EIA-0383(2014). If this information or a reproduction of it is used, credit must be given to the Lawrence
Livermore National Laboratory and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation.
EIA reports consumption of renewable resources (i.e., hydro, wind, gecthermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant "heat rate". The efficiency of
electricity production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 65% for the residential

sector, 65% for the commercial sector, 80% for the industrial sector, and 21% for the transportation sector. Totals may not equal sum of components due to independent rounding. LLNL-MI-676387

Please note, all results presented on this slide are PRELIMINARY and may be subject to corrections and/or changes. A cursory
analysis was performed using available information and estimates of impacts due to changes to the modeled energy systems.



Energy Flows — 2050 High RE/H,

2050 Estimated U.S. Annual Energy Use with High Hydrogen ENERGY
Contributions Broken Out ~ 77 Quads
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Laboratory and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports
consumption of renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant "heat rate"™. The efficiency of electricity

production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as €5% for the residential sector, 65% for
the commercial sector, B0% for the industrial sector, and 21% for the transportation sector. Totals may not equal sum of components due to independent rounding. LLNL-MI-§76987

Please note, all results presented on this slide are PRELIMINARY and may be subject to corrections and/or changes. A cursory
analysis was performed using available information and estimates of impacts due to changes to the modeled energy systems.



BAU;..cesnu VS. High H, — Energy Difference*

Energy Use difference between 2050 high-H, and AEO 2040 scenarios (Quad Btu)

Red flows represent a reduction (between scenarios)
Black flows represent an increase (between scenarios)

solar +2.5

Ltg Lawrence Livermore
National Laboratory

Elec. BSX. W,

0 27.4
+ Reduction
wind in rejected
12.8 +104 Hz energy
9.2 -27.3
Resid.
9.8
Comm.
2. Difference
in energy
Indus. 21 services
25.1 -3.8

e Transp. -2
62 25.6

* Only differences >1.5 quad shown for clarity purposes, case study data and other disclaimers included elsewhere



BAU e VS. High H, — CO, Difference*

Emissions difference between 2050 high-H, and AEO 2040 scenarios (million MT)

Red flows represent a reduction (between scenarios)

solar

B Lawrence Livermoi
National Laborator

Reduction

in Carbon

Emissions
-2538

Carbon
- Emissions
3237

~ 45% reduction in CO, emissions
Grid 75%, Transportation 25%, Industrial 25%




Improving the Economics of Renewable H,

Intermittent
integration

P
o

R&D
Advances

B Other Costs

I Feedstock Costs

ydrogen Production (5/kg)
= N N w W +
v O v O U»n O

B Fixed O&M
— 10
o M Capital Costs
‘g 0.5 -
o
0.0
Capacity Factor 97% 40% 40% 90%
Cost of Electricity ¢6.6/kWh ¢1/kWh ¢1/kWh
Capital Cost S400/kwW S400/kW S$100/kW
Efficiency (LHV) 66% 66% 60% Steam
Methane
Electrolyzer Reforming

(SMR)



Investments to Enable H, at Scale

R&D Impact on Fuel Cell Costs

Projected Transportation Fuel Cell System Cost
at high-volume (500,000 units per year)

~ $2751
$280 | "l

5280 - Fuel Cell R&D has
ol B o decreased projected

costs by 80%

$106/
$81/
kW 2020
iﬁgf Target
$59f $57‘\|| $40.‘" Ultimate
$55! $55! $55! Target
I | I I | $3w
| | |

2002 2006 2007 2008 2009 2010 2011 2012 2013 2014 2020 2030

$120 —

$100

$80 —

$60 —
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Data from FCTO AMR presentations.



What is needed to achieve H, at Scale?

Low and High Temperature
H, Generation

H, Storage and
Distribution

Development
of low cost,
durable, and
intermittent H,
generation.

Development of
thermally
integrated, low
cost, durable,
and variable H,
generation.

Development of
safe, reliable,
and economic

storage and
distribution
systems.

H, as game-
changing energy
carrier,
revolutionizing
energy sectors.

Analysis

Foundational Science

Future Electrical Grid




Initial Research Priorities

H, Storage and

Low T generation High T generation

Distribution

* Develop and test * Thermal system * Examine grid-scale * Process heat
durable systems integration hydrogen storage integration with
for variable * Material systems iechnelogles variable hydrogen
operation for advanced redox * Material generation

* Develop and cycles compatibility for * New process
integrate new cell pipelines and chemistry with
component compressors hydrogen as
materials reductant

Analysis

* Comparison between several internally-consistent, deeply-decarbonized futures
* Technoeconomic and life-cycle analysis to support R&D directions

Foundational Science
* Understand chemical-bond energy-storage mechanisms and interactions
* Discover new materials for efficient energy-conversion

Future Electrical Grid
* Analysis and design for reliable and resilient grid interactions




Stakeholder Engagement

» Utilities/Regulators

* Industrial Gas .
Presentations

* Big Oil Workshops

* OEMs/supply chain Working groups
* Metals

* Ammonia

* Biomass upgrading
* Investment community



H, at Scale Value Summary

 Reducing emissions across sectors (GHG, criteria
pollutants)

e Support needs of dynamic, variable power systems
(dispatchable, scalable, ‘one-way’ storage)

Unique potential of H, to

positively impact all these areas FEEITE:
GHG
: emissions
* Other benefits
— Energy security ‘
(diversity/resiliency/domestic) Multiple
— Manufacturing competitiveness/ energy
job creation sectors

— Decreased water requirements



What does success look like?
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Reduction by
Sector

Industrial

MORE
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Security
Resiliency

fewer GHG emissions 2050

than today . .. by
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U.S. DEPARTMENT OF Energy Efﬁciency &

ENERGY Renewable Energy

Thank You

Presenter(s):
*Bryan Pivovar : Fuel Cell Group Manager - NREL

— Bryan.Pivovar@nrel.qov

DOE Host:
*Erika Gupta : Technology Manager - Fuel Cell Technologies Office

Questions? - DOEfuelcellwebinars@EE.Doe.Gov

Webinar Recording and Slides:
(http://energy.gov/eere/fuelcells/webinars)

Newsletter Signup
(http://energy.gov/eere/fuelcells/subscribe-news-and-financial-opportunity-

updates)

33 | Fuel Cell Technologies Office eere.energy.gov



mailto:Bryan.Pivovar@nrel.gov
mailto:DOEfuelcellwebinars@EE.Doe.Gov
http://energy.gov/eere/fuelcells/webinars
http://energy.gov/eere/fuelcells/subscribe-news-and-financial-opportunity-updates
http://energy.gov/eere/fuelcells/subscribe-news-and-financial-opportunity-updates
http://energy.gov/eere/fuelcells/subscribe-news-and-financial-opportunity-updates
http://energy.gov/eere/fuelcells/subscribe-news-and-financial-opportunity-updates
http://energy.gov/eere/fuelcells/subscribe-news-and-financial-opportunity-updates
http://energy.gov/eere/fuelcells/subscribe-news-and-financial-opportunity-updates
http://energy.gov/eere/fuelcells/subscribe-news-and-financial-opportunity-updates
http://energy.gov/eere/fuelcells/subscribe-news-and-financial-opportunity-updates
http://energy.gov/eere/fuelcells/subscribe-news-and-financial-opportunity-updates
http://energy.gov/eere/fuelcells/subscribe-news-and-financial-opportunity-updates
http://energy.gov/eere/fuelcells/subscribe-news-and-financial-opportunity-updates

Back-up Slides



Low and High T H, Generation

Cost Distribution
PEM System

Electricity
Grid

15%

IIIIIIIII

W Stack
H Power Electronics
Gas Conditioning

60%
M Balance of Plant

ttttt

Specific Hg Production Technology Needs
* PEM electrolysis

Research Priorities _ - Cell/Stack Components
Durability for intermittent operation - Power electronics/BOP

Concentrated Solar Power

* Lower cost (?Iectroly5|s * Advanced alkaline electrolysis (membranes)
) Manufac'Furlng a'_( scale * Solid oxide electrolysis/thermal chemical
* Thermal integration - Oxide conducting materials

- Thermal integration



H, Storage and Distribution

Research Priorities

Development of storage/delivery
systems for large-scale grid and
industrial use

Assessment of potential for
integration with existing
technology and infrastructure
System analysis, integration and
optimization

Specific Technology Needs

* Hydrogen Storage
- Chemical/metal hydrides

- Materials systems
- Catalysis

- Physical Storage

- Geologic
- Manufactured

* Direct Electro-Chemical Hydride Conversion

e Distribution

Compression

Liquefaction

Materials Com patlblllty (Hydrogen Embrittlement)
Leak Detection/Repair

Hydrogen Contamination/Purification
Materials Compatibility

Grid Integration/Optimization



H, Utilization

Value Added
Applications

Research Priorities

New process chemistry with H,

used as a reductant

- Chemical, Fuels, Metals Production
Process efficiency improvement

- Industry and power systems
Process heat integration with
intermittent H, generation

H, / H,-rich flame modeling

Specific H; Utilization Technology Needs

Ammonia production

- Distributed/modular
Refineries and Biofuels

- Process integration

Metals and glass making

- Game changing direct reduction
- Reducing gases for annealing/
- tempering

Combustion Processes

- Burner design and testing

- Flame chemistry impacts

- Use of oxygen

H, Heat Pumps

- Waste heat recovery

- Heat amplification / cooling



Foundational Science

Synthetic
Fuels

Value Added
Applications

y

J Hydrogen/ \
Matural Gas \._\

Infrastructure \

Metals
Refining

Other
End Use

Hydrogen
Generation

Concentrated Solar Power

Fundamental understanding of
potentially revolutionary
technologies for other chemical
bond energy storage/conversion.

Numerous chemistry/ materials issues:
Catalysis/Reactions
Systems far from equilibrium
Confined catalysis
Corrosion
Detection and understanding of rare events
Material interactions (Embrittlement)
ser facilities
SNS, light sources, nanocenters, microscopy
CSR and advanced computing

Big data

Algorithms for prediction multiscale physics
AP leveraged science
IGI (expansion)

dissolution, kinetics, solvents



Grid Integration

Specific Grid Integration Technology Needs
e Affordability

* Modest capital investment for
production and storage

 Renewable hydrogen source for
marketplace revenue

Flexibility- Scalable, deployable, multiple
renewable hydrogen markets

Reliability
e Stable, sufficient power source

* Inherently integrated element of grid

* Resilience- Distributed production and
storage systems—Ilarge storage options

 Sustainability- Enable stable grid with
abundant renewables-demand/response

Research & Development Priorities
e Systems analysis

* Systems engineering

e Systems design and demo

e Security- Enable domestic, renewable
energy resource



Analysis

Value Added

Analysis Priorities

» Specifying the role of hydrogen in
deep decarbonization of the U.S.
energy sector

* Understanding of drivers
impacting energy sector evolution

e Quantification of hydrogen
potential to meet seasonal
electricity storage requirements

e Technoeconomic analysis

* Life cycle analysis

Specific Analysis Needs
* Role of hydrogen within energy sector
- Energy sector evolution / capacity
expansion analysis to identify key
opportunities for hydrogen to support
power, gas, industrial, and
transportation sectors
- Grid operations co-optimization with
hydrogen providing grid support on
short and long time-frames and on
regional and national scales
- Analysis of the hydrogen’s benefits
resilience, reliability, and robustness
e Technoeconomic analysis to support R&D
directionin hydrogen generation, storage
& distribution, and end use
 Life cycle analysis to identify opportunities
to reduce GHG and criteria pollutant
emissions
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