

An Alliance with Mother Nature in the Quest for Ever More Complex Integrated Nanosystems

Alex Zettl

Department of Physics, University of California at Berkeley, Materials Sciences Division, Lawrence Berkeley National Laboratory

Integrated Nanosystems for Atomically Precise Manufacturing (INFAPM) Workshop, August 5, 2015, Berkeley, CA

Building a Pyramid

Natural pyramids in Pyramid Lake, Nevada

Building a Pyramid

Natural pyramids in Pyramid Lake, Nevada

Building a Pyramid

Artificial pyramids in Giza, Egypt

Precise Manufacturing

Source building material

Transport

Manufacture-compliant architecture

Assembly/Integration

Nature Does Better at Smaller Scale

Quartz Crystals

Can we work with nature to enable precise, atomic-scale assembly?

We require

- 1. Source material (atom/molecule/nanoparticle) reservoir
- 2. Transport mechanism
- 3. Compliant architecture
- 4. Fault-tolerant assembly method

Assembling (and disassembling) a nanocrystal, atom-by-atom

Zettl Group Nanocrystal Actuator

Nanocrystal ram motor is fully controllable, reversible

Nanocrystal ram is regrown each cycle-- No wear or fatigue

Power density: 3 GW/m³

Biomotors, automobiles: .03 GW/m³)

Regan, Aloni, Jensen, Zettl, Nature (2005); Nanoletters (2005)

Nested nanotubes: the smoothest bearings?

Theory: Charlier et al; Crespi; Louie & Cohen

Organic Chemistry Route to Carbon Nanotubes

Proposed stack

Realized stack

After 7 years of very sophisticated organic chemistry...

stack is 3 units high

Non-equilibrium (plasma) synthesis of nested carbon nanotubes

Terrones, M. Annu. Rev. Mater. Res. 2003, 33, 419

Nanoscale Linear/Rotational Bearing

Cumings & Zettl, Science (2000), Kis & Zettl, PRL (2006)

Nanotube-bearing based rotational electric nanomotor

E-Beam lithography, Si processing

History of Radio Technology

Key developments:

- Theory (EM, quantum mechanics)
- Materials (semiconductors)
- Integration (on-chip architecture)

Multi-component System: Radio

Radio Receiver

Ultimate Integration: One-Molecule Device

Entire radio implemented with one nanotube.

Antenna

Charged tip of nanotube is sensitive to external *E* fields.

Tuner

All-in-one nanotube radio

Vibrates when radio signal matches resonance frequency.

Amplifier

Vibrating tube modulates field emission current.

Demodulator

All-in-one nanotube radio

Field emission nonlinearities demodulate radio signal.

All-in-one nanotube radio

Output

Measure current with sensitive ammeter.

A Miniaturization Challenge

"...\$1,000 to the first guy who makes an operating electric motor---a rotating electric motor which can be controlled from the outside and, not counting the lead-in wires, is only 1/64 inch cube."

Richard P. Feynman, 1959

(1960)

William McLellan (left) and Richard Feynman

1 mm

Don't fight nature— exploit it!