

Twenty Five Hundred Years of Small Science What's Next?

Lloyd Whitman

Assistant Director for Nanotechnology

White House Office of Science and Technology Policy
Workshop on Integrated Nanosystems for Atomically Precise Manufacturing
Berkeley, CA, August 5, 2015

Democritus (ca. 460 – 370 BC)

Everything is composed of "atoms" *Atomos* (ἄτομος): that which can not be cut

www.phil-fak.uniduesseldorf.de/philo/galerie/antike/ demokrit.html

Quantum Mechanics (1920s)

Max Planck 1918*
Albert Einstein 1921
Niels Bohr 1922
Louis de Broglie 1929
Max Born 1954
Paul Dirac 1933
Werner Heisenberg 1932

ANNALES

PHYSIQUE

EXTRAIT

RECHERCHES SUR LA THÉORIE DES QUANTA

Par M. Louis de BROGLIE

Annales de Physique - 10° Série - Tome III - Janvier-Février 1925

On the Theory of Quanta Louis-Victor de Broglie

MASSON & C1., ÉDITEURS

*Nobel Prizes in Physics

Wolfgang Pauli 1945

Erwin Schrödinger 1933

https://tel.archives-ouvertes.fr/tel-00006807

Ernst Ruska (1906 – 1988)

Electron Microscopy

Magnifying higher than the light microscope - 1933

Nobel Prize in Physics 1986

www.nobelprize.org/nobel_prizes/physics/laureates/1986/ruska-lecture.pdf

Richard Feynman (1918-1988)

There's Plenty of Room at the Bottom, An Invitation to Enter a New Field of Physics

What would happen if we could arrange the atoms one by one the way we want them...?

December 29, 1959

richard-feynman.net

Heinrich Rohrer (1933 – 2013) Gerd Binnig

Scanning Tunneling Microscopy - 1981

I could not stop looking at the images. It was like entering a new world.

Gerd Binnig, Nobel lecture

Binnig, et al., PRL 50, 120 (1983)

Nobel Prize in Physics 1986

C60: Buckminsterfullerene

Kroto, Heath, O'Brien, Curl and Smalley - 1985

...a remarkably stable cluster consisting of 60 carbon atoms...a truncated icosahedron.

Nature **318**, 162 (1985)

http://www.acs.org/content/acs/en/education/whatis chemistry/landmarks/fullerenes.html

Nobel Prize in Chemistry 1996
Curl, Kroto, and Smalley

Positioning Single Atoms with a Scanning Tunnelling Microscope

Eigler and Schweizer - 1990

...fabricate rudimentary structures of our own design, atom by atom.

Nature 344, 524 (1990)

Helical Microtubules of Graphitic Carbon

aka, carbon nanotubes

Sumio Iijima - 1991

Here I report the preparation of a new type of finite carbon structure consisting of needle-like tubes.

lijima, Nature 354, 56 (1991)

Proposing a National Initiative

Interagency Working Group on Nanoscience, Engineering and Technology - 1999

Chair: M. C. Roco, NSF

White House IWGN Co-chair: T. A. Kalil

Vice-chair: R. Trew, DOD

Executive Secretary: J. S. Murday, NRL

National Science and Technology Council Committee on Technology Interagency Working Group on Nanoscience, Engineering and Technology (IWGN)

> Nanotechnology Research Directions: IWGN Workshop Report

Vision for Nanotechnology R&D in the Next Decade

SEPTEMBER 1999

President Clinton at CalTech

http://assets.kennislink.nl/system/files/000/082/771/large/ClintonNNI.jpg

Announcing the National Nanotechnology Initiative - January 21, 2000

Some of these research goals will take 20 or more years to achieve. But that is why -- precisely why -- ...there is such a critical role for the Federal government.

National Nanotechnology Initiative (NNI)

20 Federal Departments and Independent Agencies
11 with nanotech budgets

2015 budget: \$1.5 billion \$22 billion since 2001

www.nano.gov

NNI Brochure, 2000

How the NNI Functions

Management: White House and Federal agencies

Coordination: Nanoscale Science, Engineering, and Technology (NSET) Subcommittee

Reporting, Logistics, Outreach: NNCO

15 Years of Presidential Nanotechnology

"Just imagine materials with 10 times the strength of steel and only a fraction of the weight... it was a real thrill for me to meet Dr. Moore, ...even I knew what Moore's Law was."

President Clinton at CalTech, January 21, 2000

Discussing nanomanufacturing at Boise State, the President invoked Moore's law, and later remarked "Some of your faculty and students are working with next-generation materials like graphene, which is a material that's thinner than paper and stronger than steel."

President Obama at Boise State, January 21, 2015

news.boisestate.edu

So, where is the NNI today?

Major R&D Thrusts in Nanotechnology

Post-CMOS Electronics

Photonics

Energy

Nanomanufacturing (including coatings, composites)

Biotechnology and medicine Environment, Health, and Safety

NIST/CNST

Economic Impact is Growing

Project on Emerging Nanotechnologies

Consumer products grew from 380 in 2007 to 1628 in 2013

Lux Research

Global product revenue grew from \$339 billion in 2010 to \$731 billion in 2012 2014 estimate >\$1 trillion

Most products involve nanoparticle additives and coatings

So, where is the NNI today?

Should it continue?

Foundational NNI Justification Still Valid

Conde, Oliva, Artzi, PNAS 2015

Transcends disciplines

Requires deep integration

across science and engineering fields

NIST/CNST

Fabrication and metrology is expensive Requires shared infrastructure

Important for U.S. competitiveness

Federal investments key to encouraging sustained private sector investments

So, where is the NNI today?

Should it continue?

What's next?

Fifth Assessment of NNI by PCAST

NNI has delivered significant S&T progress

Healthy research should continue

International competition has increased *U.S. now behind in infrastructure,* workforce

"NNI 2.0" should focus on nano-systems and commercialization

Agencies should facilitate commercialization through Grand Challenges

Need formal system of metrics to track progress

Nanotechnology-Inspired Grand Challenges for the Next Decade

Ambitious but achievable goals that harness nanoscience, nanotechnology, and innovation...

RFI posted on 6/17/2015, responses due 7/16/2015 https://federalregister.gov/a/2015-14914

Offers six examples developed by agencies, NNCO, & OSTP

Looking for other challenges, variations on examples, comments on examples

The Future of the NNI

How can the NNI continue as a truly <u>national</u> initiative?

How do we broaden awareness, participation, and cohesion of the entire NNI ecosystem: STEM-ed, R&D, societal acceptance, and commercialization?

The Future of the NNI

Is something holding back the high-value, higher-complexity products?

Manufacturing metrology

EHS

Design rules

Life cycle assessment

The Future of the NNI

Can we change the economics of nanotechnology?

Adapt nanotech tools & methods for new sectors

Make nanotech less capital intensive; i.e. "lean nanomanufacturing startup"

