

NSF Nanomanufacturing Programs

Khershed P. Cooper, PhD

Program Director, Nanomanufacturing
ENG-CMMI
National Science Foundation
Arlington, VA

Nanomanufacturing @ NSF

<u>NM</u>

- \$100-150K/yr
- 3-years
- 1-investigator
- Fundamentals
- TRL 1

SNM

- \$250-375K/yr
- 4-years
- Inter-disciplinary; Industry
- Address scalability
- TRL 1-2

NSECs / NERCs

- \$4M/yr
- 5 to 10-years
- Multi-institution; Industry; Labs
- Systems approach
- TRL 1-3

EFRI: 2-DARE

- \$2M/yr
- 4-years
- Team
- Fundamentals
- TRL 1

SBIR/STTR

- \$150K/6 mts + \$750K/2 yrs
- 2-3-years
- Small business
- Commercialization
- TRL 4-7

Nano IMIs

- \$15-20M/yr + matching
- 5-years + sustain
- PPP
- Overcome "valley of death"
- TRL 4-7

NM Program

Objective

Study the principles for the manufacturing of nano-scale materials, structures, devices ... complex nano-enabled engineered systems

Phenomenological

Conduct *fundamental* research in novel nano-scale processes

Leverage *advances in understanding* of nanoscale phenomena

Promote *design and integration* of nanostructures
to higher-order systems

Practical

Encourage systems approach to scale-up

Address *manufacturability issues*– quality, efficiency, yield,
scalability, reliability, safety and
affordability

Advance

instrumentation, metrology and standards

Validation

Base research on *computation,* modeling and simulation

Qualification

Use of process sensing, monitoring, and control

Activities that advance NM fundamentals

SNM Program

Objective

Research to *overcome the key scientific and technological barriers* that prevent the production of useful nanomaterials, nanostructures, devices and systems at an *industrially relevant scale*, reliably, and at low cost and within *environmental*, *health and safety guidelines*

- MUST: Address scale-up large area, continuous ...
- STRONGLY ENCOURAGED: Multi-disciplinary collaboration ENG, MPS
- ENCOURAGED: Industrial collaboration tangible
- MUST: Address NM value chain building-blocks → systems
- ENCOURAGED: Design principles for production systems platforms; metrology, instrumentation, standards; process control methodologies; quality and yield assessment

Activities that address manufacturability

Motivation Factors

What we are interested in ...

- Research to overcome fundamental knowledge barriers that prevent manufacture of useful nano-enabled products in high volumes and at low cost
- Proposed manufacturing processes must have potential for scale-up
- New fundamentals with nano-scale justification having far-reaching impact
- Nanomanufacturing knowledge base having wider applicability

What we are not ...

- Materials Research New nanomaterials and nanostructure syntheses, bulk processing, extensive characterizations, testing and analyses
- Device Physics Studies and analyses at device-level

Research Areas

Materials and Structures

C-based: CNT, Graphene, Bucky-tape, CNT Fibers, Cellulosic

Nanostructures: Nanoporous, Aerogels, Membranes, Electrodes, Arrays, Gratings

Semiconductors: Organic, Amorphous Si, Compound

Metals and Ceramics: Ag, Au, Cu, Pt, Ti, Oxides, Sulfides, Borides

1D: Nanowires, Nanopillars, Nanotubes, Nanofibers, Nonwovens

2D Atomic Layer: MoS₂, BN, TMDs

Nanoparticles: Magnetic, Semiconductor, Dielectric, QDs, Core-shell, Janus, Hierarchical

Complex: Metamaterials

Structural: Nanocomposites

Functional: Catalysts

Thin-films: Langmuir-Blodgett Films

Research Areas

Processes and Methods

Chemical/Thermal: Combustion, Plasma, Hydrothermal, Thermal Drawing, Etching

Vapor-based: CVD, PVD, PECVD, Laser CVD, ALD, MLD

Self-assembly: Spontaneous, Directed, Templated, Molecular

Patterning/Printing: Direct-write, AFM, DPN, Photolithography, NIL

Templated patterning: Block Copolymers (BCPs)

Solution-based: Wet-coating, Die-casting, Film And Laminate Casting, Slot-coating, Colloids

Fluidics: Electrospray, Electrophoresis, Electrospinning, Electroetching, Microfluidics

Directed Energy: Laser Beam, E-beam, Ion-beam

Bio-inspired: DNA, Virus, Protein Templates for Patterning and 3D Nanostructure

Mechanical: Exfoliation, Nanomachining

High-throughput: Roll-to-Roll, Microreactor, Large Area, Massively Parallel

System-level: In-line Metrology, Process Control, System Integration, Nano-positioning

3D Nanomanufacturing: micro-SLA, 3D Printing, Holographic Lithography, MacEtch

Research Areas

Applications

Energy: Storage, Conversion, Batteries, Capacitors, Supercapacitors, PVs, Solar Cells, Fuel Cells

Environmental: Water Purification, Analytical Separation, Wastewater Treatment

Electronics: ICs, Flexible, Storage Memory, 3D Devices, Thin-Film Devices, EM-Shielding

Optoelectronics/Photonics: Imaging, Waveguides, Displays, Lighting

Magnetics: Motors

Sensors: Biological, Chemical, Multiplexed

Structural: High-Strength, Light-Weighting, Packaging

Biomedical: Implants, Tissue Scaffolds, Diagnostics, Therapeutics

Probes: Resistivity, Cellular Electrophysiology, Neural Electrical Signal

Patterning: Templates, Masks, Photoresists

Chemical: Oxidation Catalysis, Gas Storage

Sheets and Ropes: Fibers, Cables, Filters, Textiles, Paper

Examples of NM Research

Casting Inorganic Nanostructure Arrays with 3D DNA Crystal Molds PI: Peng Yin, Harvard

Casting growth: sub-25 nm digital fabrication of 3D metal nanoparticles at sub-5 nm resolution

Ultrafast Laser Directed 3D Nanofabrication PI: Costas Grigoropoulos, UC-Berkeley

Multi-scale 3D biomimetic structure

Wood-pile photonic crystal of 400 nm periodicity by twophoton polymerization

Examples of SNM Research

Manufacturing of **Nanostructured Membranes for Fracking Wastewater Treatment**

Aim 2: Roll-to-roll

R2R Manufacturing of Cellulosic Nanomaterial (CN) Films & Laminates PI: Jeffrey Youngblood, Purdue

- Solvent-less CN modification
- Real-time in-line measurement and feedback
- Integrated multi-scale modelling

Future Trends

Nanotechnology Roadmap

Increased complexity, new functions, more capabilities in less space

Complex Systems

- Heterogeneous, multi-functional, multi-component, multi-scale systems
- Systems having one or more of following attributes:
 - adaptive, responsive to external stimuli, biomimetic, intelligence and smarts, autonomous, ...

Nanomodular Materials and Systems by Design

 3D assemblies and integration, hierarchy and functionality, materials and systems architecture, interfaces for modular assembly, simulations and predictive models

Nanomanufacturing Value Chain

Manufacturing Challenges

Desired Outcomes

- Product quality and durability
- Process repeatability and reliability
- Production scalability and affordability
- Yield and production efficiency
- Desired device and system performance and functionality

Appropriate Metrics

- Precision of placement
- Feature size and resolution
- Overlay registration
- Nanostructures:
 - Density,
 - Complexity,
 - Rate of forming

APM-My 2 cents

Challenges

- What structures, devices, systems, products are of interest?
 - Structural, Functional, Multi-functional
 - Scale, complexity, heterogeneity
- What will be the manufacturing tools?
 - Integrated nanosystems
 - Precision, control
- What will be the production rates?
 - Build rate