

Attribute Preserving Optimal Network Reductions

Dan Tylavsky, Yujia Zhu, Shruti Rao Arizona State University

with William Schulze, Ray Zimmerman, Dick Shuler Cornell University

> Biao Mao Rensselaer Polytechnic University

> > Dan Shawhan Resources for the Future

Cornell University

CERTS R&M Review—Arlington VA June 9-10, 2016

Context

- Objective: Develop reduced-order network procedures that preserve voltage.
- IF you can preserve complex-value voltage phasors, then you can preserve most important quantities.
- Traditional network reductions (e.g., Ward & REI)
 - Use linearization somewhere in the process.
 - Theoretically exact only at a point—base case
- Objective: Develop network reduction
 - Preserve phasor voltages
 - Must preserve nonlinearities
- Achievement:
 - Network voltages theoretically exact along a (α) line--polynomial nonlinearities.
- Future
 - Preserve network voltages in a hyperplane—polynomial nonlinearities.
- Ultimate goal:
 - Application to the risk analysis problem when uncertainty is large.
 - (Important for voltage stability assessment.)

Outline

- Nonlinear Inverse functions: Use the Holomorphic Embedding Method (HEM) allowing nonlinear injections (Constant P/Q injections, ZIP loads)
- Network reduction via nonlinear inverse functions: radial and meshed systems.
- (Shruti Rao) Radial distribution system—Nonlinear two-bus phasor voltage-preserving model.
 - Convergence Issues: Power flow versus network equivalencing.
 - On the α line
 - Off the α line (estimating α)
- (Yujia Zhu) Meshed network—Generalizing the nonlinear phasor-voltagepreserving model reduction, arbitrary reduced-order model.
 - Derivation
 - Numerical experiments
 - Var limiting of external generators—theory and (prelim.) experiments.
 - Theory for moving along the $\alpha\Delta S$ line. (Shruti Rao and Yujia Zhu)
 - Application of inverse functions to the risk analysis problem (future.)

Inverse Functions using HEM

- The power balance eq. (PBE) for a *PQ* bus can be written as: $\sum_{k=1}^{N} Y_{ik}V_k = \frac{S_i^*}{V_i^*}$
- Holomorphically embedded as follows: $\sum_{k=1}^{N} Y_{ik} V_k(\alpha) = \frac{\alpha S_i^*}{V_i^*(\alpha^*)}$
- With this embedding, α scales complex load, S.
- For holomorphic functions, $V(\alpha)$ is represented has Maclaurin series truncated N_{τ} terms :

 $V(\alpha) = V[0] + V[1]\alpha + V[2]\alpha^2 + \ldots + V[N_T]\alpha^{N_T}$

Inverse Functions using HEM

- Express inverse of $V_i(\alpha)$ series on the RHS as an inverse series $W(\alpha)$ where $W_i(\alpha) = \frac{1}{V_i(\alpha)}$
- Thus the PBE is represented as:

$$\sum_{k=1}^{N} Y_{ik} (V_k[0] + V_k[1]\alpha + V_k[2]\alpha^2 + \dots + V_k[N_T]\alpha^{N_T}) =$$

 $\alpha S_i^* (W_i^*[0] + W_i^*[1]\alpha + W_i^*[2]\alpha^2 + \ldots + W_i^*[N_T]\alpha^{N_T})$

- The solution at $\alpha = 0$ (germ) : $\sum_{k=1}^{N} Y_{ik} V_k[0] = 0$
- Subsequent series terms obtained through a recurrence relation obtained by equating like powers of α on both sides.

$$\sum_{k=1} Y_{ik} V_k[n] = S_i^* W_i^*[n-1]$$

Inverse Functions using HEM

Similarly the equations for PV buses can be embedded as follows:

$$\sum_{k=1}^{N} Y_{ik} V_{k}(\alpha) = \frac{\alpha P_{i} - jQ_{i}(\alpha)}{V_{i}^{*}(\alpha^{*})} \qquad V_{i}(\alpha) * V_{i}^{*}(\alpha^{*}) = |V_{i}^{sp}|^{2}$$

where P_i is the known power injected into the bus and V_i^{sp} is the specified voltage for the PV bus.

• The embedded equation for the slack bus is given by:

$$V_{slack}(\alpha) = V_{slack}^{sp}$$

 Combining the slack, PQ and PV bus equations, the PBE's of a power system can be solved recursively to obtain the terms of the voltage power series.

ARIZONA STATE Inverse Functions using HEM UNIVERSITY Analytic Continuation via Padé Approximants

- Challenge: The voltage power series may not always converge.
- Padé approximants are used to obtain a converged solution, if it exists.
- Stahl's Padé convergence theory- For an analytic function with finite singularities, the sequence of near-diagonal Padé approximant converges to the function...^[1]
- Padé approximants are rational approximants to the given power series given by:

$$V(\alpha S) = V[0] + V[1]\alpha + V[2]\alpha^{2} + \dots + V[L + M]\alpha^{L+M} + O(\alpha^{L+M+1})$$
$$= \frac{a_{0} + a_{1}\alpha + a_{2}\alpha^{2} + \dots + a_{L}\alpha^{L}}{b_{0} + b_{1}\alpha + b_{2}\alpha^{2} + \dots + b_{M}\alpha^{M}} = \frac{a_{L}(\alpha)}{b_{M}(\alpha)}$$

[1] H. Stahl, "On the Convergence of Generalized Padé Approximants," Constructive Approximation, 1989, vol. 5, pp. 221–240.

Padé approximants Power Flow Convergence Issues

• **Power flow convergence** check diagonal approximants at all/sentinel nodes at α =1:

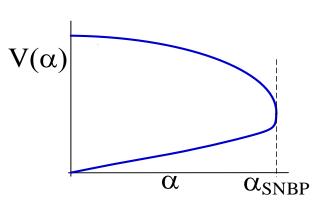
$$V(\alpha)_{[M/M]} = \frac{a_0 + a_1\alpha + a_2\alpha^2 + \dots + a_M\alpha^M}{b_0 + b_1\alpha + b_2\alpha^2 + \dots + b_M\alpha^M} = \frac{a_M(\alpha)}{b_M(\alpha)}$$

$$\left\|\frac{a_{M+1}(\alpha)}{b_{M+1}(\alpha)}\right| - \left\|\frac{a_{M}(\alpha)}{b_{M}(\alpha)}\right\|_{\alpha = 1} = \left\|V(\alpha)_{[M+1/M+1]}\right| - \left|V(\alpha)_{[M/M]}\right\|_{\alpha = 1} < 10^{-4}$$

- We then check for bus-power mismatches < 0.1 MW (transmission).
- Convergence check for generating equivalents.
 - Diagonal approximants at all/sentinel nodes at α =SNBP.

$$\left\|\frac{a_{M+1}(\alpha)}{b_{M+1}(\alpha)}\right| - \left|\frac{a_M(\alpha)}{b_M(\alpha)}\right| \propto \frac{10^{-4}}{\alpha}$$

Must predict the SNBP.



Padé approximants

Equivalents-Generation Convergence Issues

- (Meshed Systems) Temporary work around.
 - Use 120 terms in the series.
 - Check condition number of Padé matrix.
 - Check Padé matrix equation solution Ax=b accuracy.
- (Radial Systems) Economical convergence check for generating equivalents.
 - Metrics for checking for SNBP convergence.
 - 1. SNBP change.
 - 2. Power mismatch < 0.1 MW

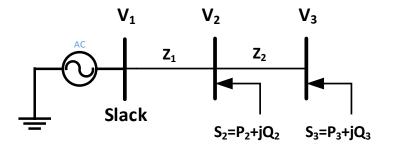
$$\left\|\frac{SNBP_{2M+K} - SNBP_{2M}}{b_{M+K/2}(\alpha)}\right\| - \left\|\frac{a_{M}(\alpha)}{b_{M}(\alpha)}\right\|_{\alpha} = SNBP_{2M+K}$$

- 3. Padé approximant change.
- SNBP may be estimated by:
 - 1) α -line binary search (experimenting)-sentinel node selection?
 - 2) roots method—finding smallest real root of high order numerator/denominator polynomial.
- Selected: #1 (SNBP convergence) and #2 (P-mismatch)
 - Used both line search and roots method with similar results on radial systems.

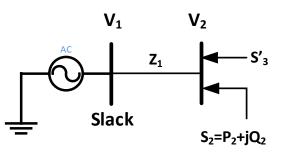
 $< 10^{-4}$

Ward Radial Network Reduction

Consider a three-bus network as shown below. SNBP=3.8×Base_Load



- Ward reduction: Convert P_3 +j Q_3 load to current injection: $I_3^*=(P_3+jQ_3)/V_3$ Eliminate bus 3 using Ward reduction method—move I_3 bus 2. Convert I_3 to equivalent $S'_3 = I_3^* V_2$ load at buses 2.

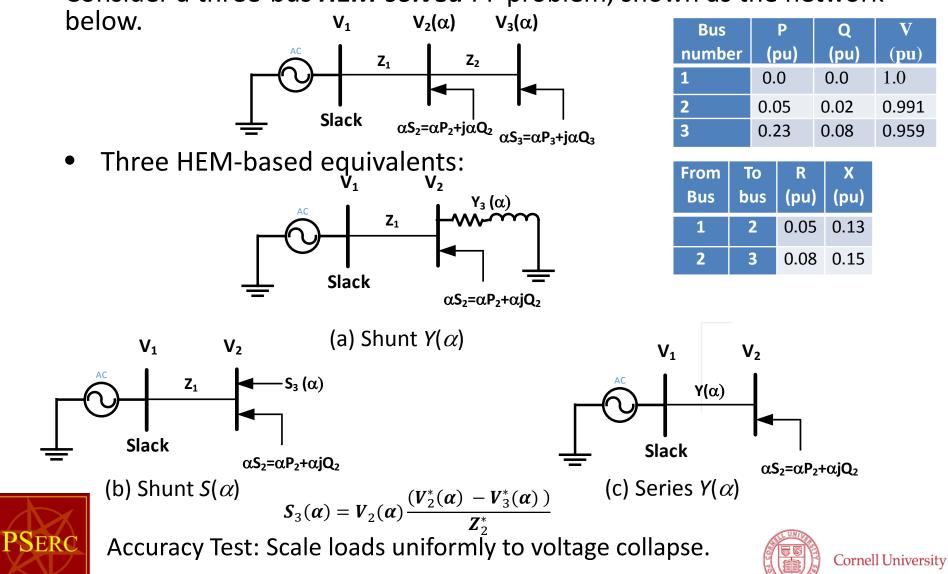


Compare with using HEM approach.

Analytic Reduction Method (ARM) CERTS

Radial Network

Consider a three-bus *HEM-solved* PF problem, shown as the network

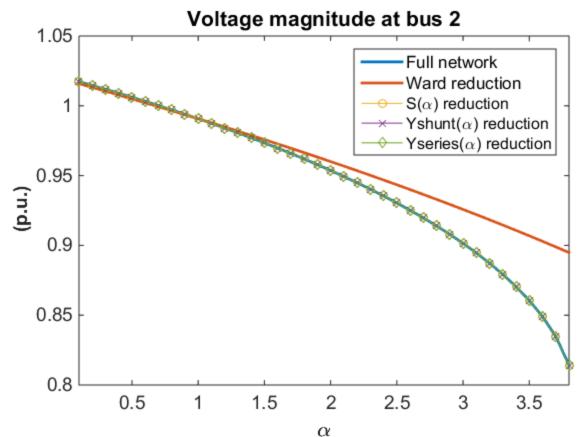


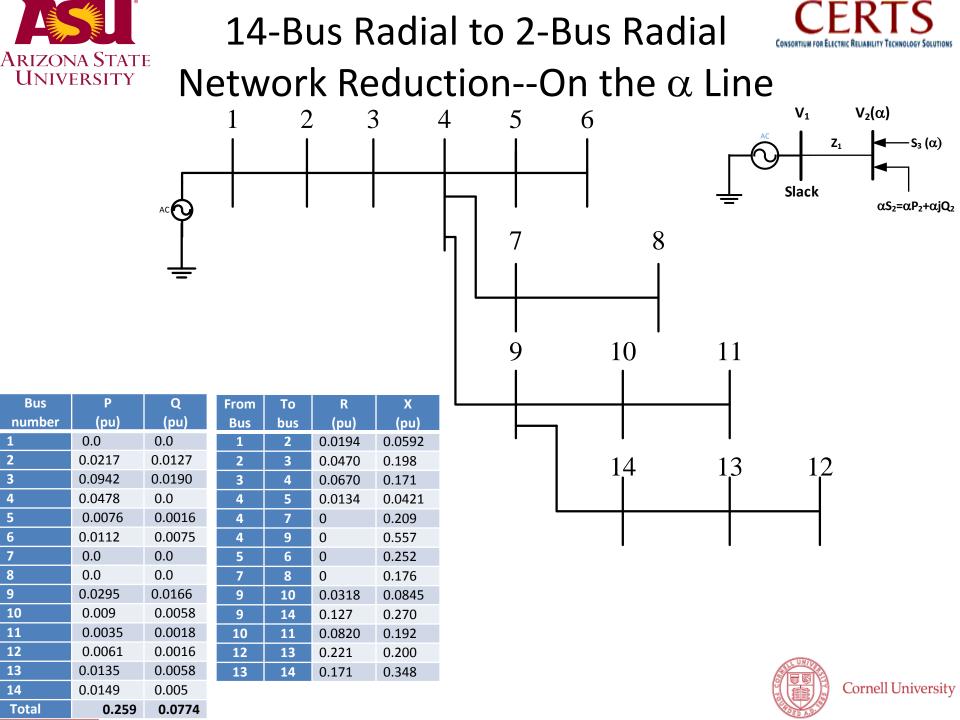
Inverse Function/HEM

3-Bus Radial Network Reduction

- Static voltage collapse point:
 - Unreduced Network: SNBP=3.8×Base load
 - Ward Reduction:

- SNBP=7.5
- Inverse Function Approach: SNBP=3.8
- Bus 2 voltage plot ($S_2=0.$)

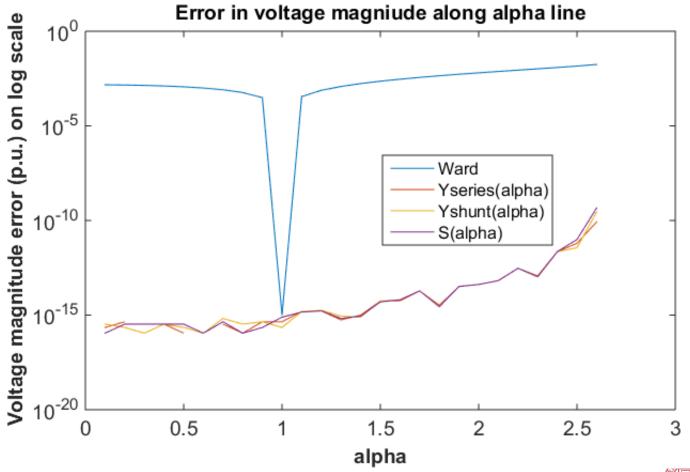




14-Bus Radial to 2-Bus Radial

Network Reduction—On the α line

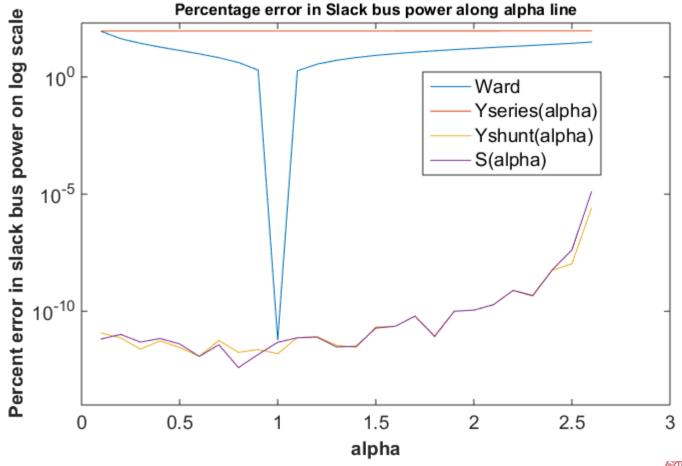
- Voltage mag error on the α line.
- SNBP=2.6α



14-Bus Radial to 2-Bus Radial

Network Reduction—On the α line

- Percent error in slack bus power on the α line.
- SNBP=2.6α
- HEM reduction approach superior to Ward reduction on the α line.



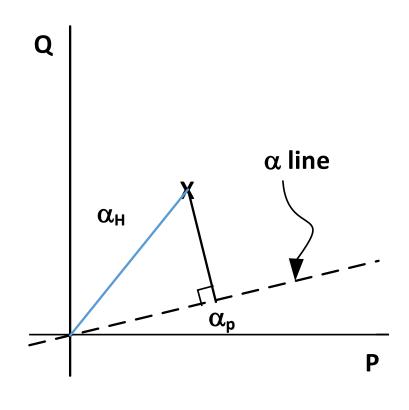
HEM Network Reduction

Getting off the α line

Estimating Equivalent α

Network Reduction—Off the α line

- HEM: How to estimate equivalent α ?—Five methods:
 - α_P -Length of orthogonal projection onto the α line.
 - $\alpha_{\rm H}$ |Sum (P+jQ)_{new}|/ |Sum (P+jQ)_{old}|
 - Etc.

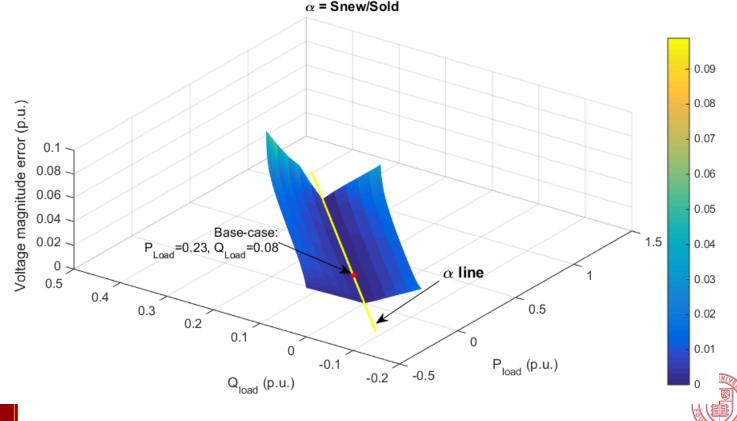


PSERG

3-Bus Radial to 2-Bus Radial

Network Reduction—Off the α line

- HEM: Reduced-order networks exact along the α line.
- α_{H} - $|S_{new}|/|S_{old}|$ Method: Bus 2 voltage magnitude error.
- Load scaled by factor of 4.
- Load variation +/-50% of base case load.

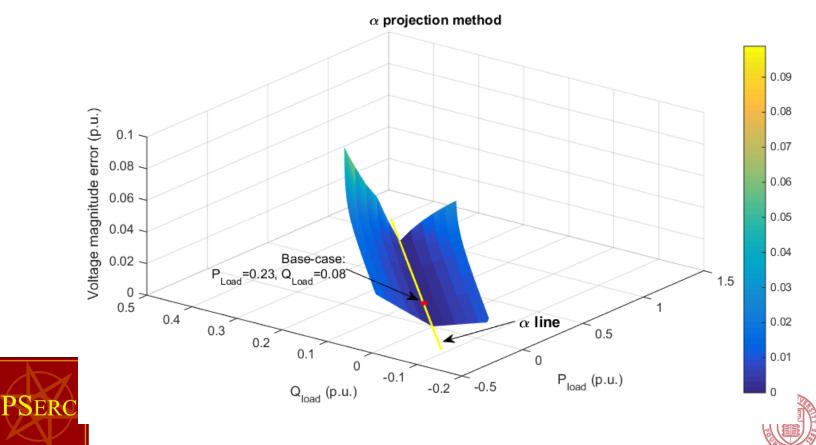


Cornell University

3-Bus Radial to 2-Bus Radial

Network Reduction—Off the α line

- α_{P} -Projection Method: Bus 2 voltage magnitude error.
- Load scaled by factor of 4.
- Load variation +/-50% of base case load.

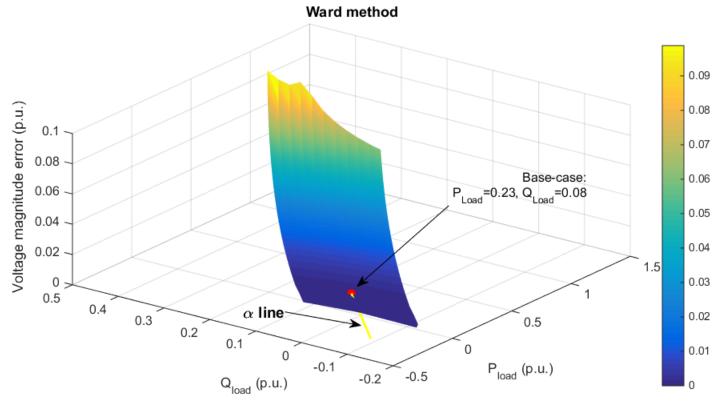


Cornell University

3-Bus Radial to 2-Bus Radial

Network Reduction—Off the α line

- Ward Method: Bus 2 voltage magnitude error—exact at one point.
- Ward: Add change in load to boundary bus injection.



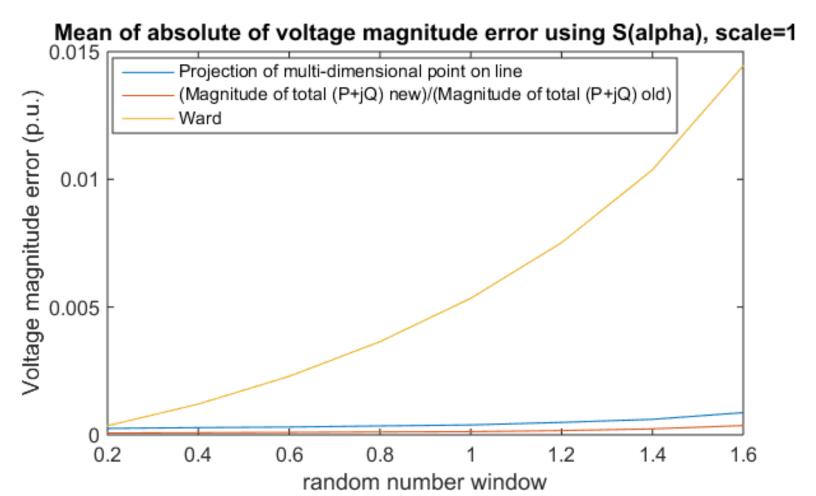
14-Bus to 2-Bus Radial Reduction \bigcap_{α} Off the α Line

- Can HEM accurately model off the α line for larger network?
- Reduce 14-bus system to 2-bus equivalent and calculate voltage error.
- Experiment #1: Modify loads on the each bus at random in the following ranges: (S_i←S_i (1+r_i), r_i real, random in window range.)
 - 0-0.2
 - 0.2-0.4
 - ...
 - 1.4-1.6
- HEM: Modify the load using equivalent alpha.
- Compare with Ward: Add add'l load to bus #2.

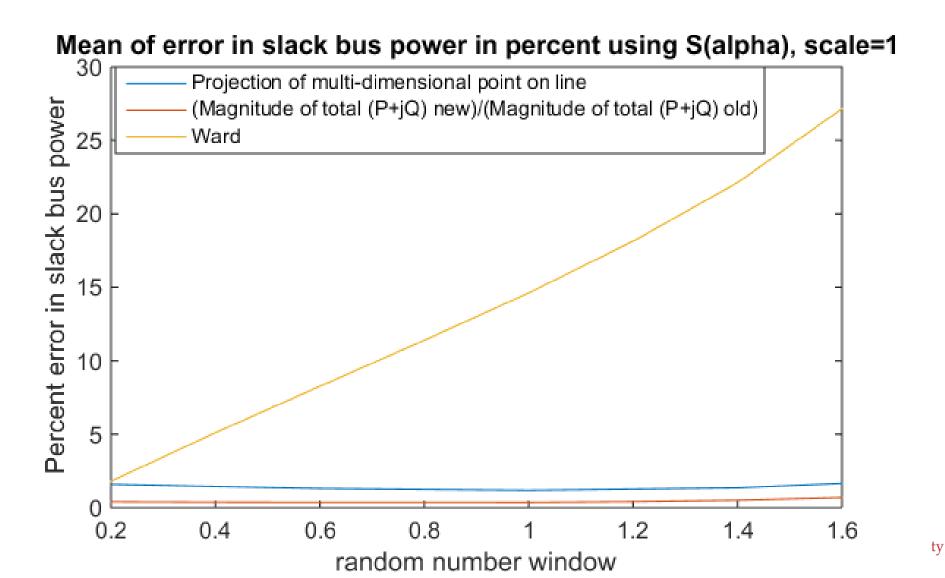
ersity

14-Bus to 2-Bus Radial Reduction $\label{eq:advector}$ Off the α Line

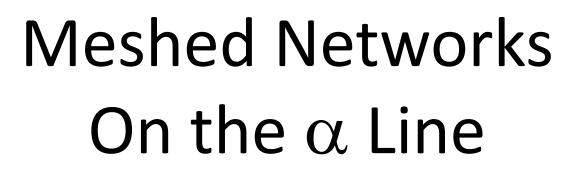
- Random number windows are: 0-0.2, 0.2-0.4, ..., 1.4-1.6
- 1000 trials.



14-Bus to 2-Bus Radial Reduction \circleon Off the α Line



HEM Network Reduction



HEM Network Reduction Meshed Networks

- Meshed Networks
 - Assume we have a solved base case using HEM:

 $\begin{bmatrix} Y_{ee} & Y_{eb} \\ Y_{be} & Y_{bb} & Y_{bi} \\ & Y_{ib} & Y_{ii} \end{bmatrix} \begin{bmatrix} V_e(\alpha) \\ V_b(\alpha) \\ V_i(\alpha) \end{bmatrix} = \begin{bmatrix} S_e^*(\alpha) / & V_e^*(\alpha^*) \\ S_b^*(\alpha) / & V_b^*(\alpha^*) \\ S_i^*(\alpha) / & V_i^*(\alpha^*) \end{bmatrix}$

- Factorize admittance matrix as if performing Ward reduction.

$$\begin{bmatrix} \boldsymbol{L}_{ee} & & \\ \boldsymbol{L}_{be} & \boldsymbol{I} & \\ & \boldsymbol{I} \end{bmatrix} \begin{bmatrix} \boldsymbol{I} & & & \\ & \boldsymbol{Y}_{bb} - \boldsymbol{Y}_{be} \boldsymbol{Y}_{ee}^{-1} \boldsymbol{Y}_{eb} & \boldsymbol{Y}_{bi} \\ & \boldsymbol{Y}_{ib} & \boldsymbol{Y}_{ii} \end{bmatrix} \begin{bmatrix} \boldsymbol{U}_{ee} & \boldsymbol{U}_{eb} & \\ & \boldsymbol{I} & \\ & \boldsymbol{V}_{b}(\alpha) \\ \boldsymbol{V}_{i}(\alpha) \end{bmatrix} = \begin{bmatrix} \boldsymbol{S}_{e}^{*}(\alpha) \boldsymbol{W}_{e}^{*}(\alpha^{*}) \\ \boldsymbol{S}_{b}^{*}(\alpha) \boldsymbol{W}_{b}^{*}(\alpha^{*}) \\ \boldsymbol{S}_{i}^{*}(\alpha) \boldsymbol{W}_{i}^{*}(\alpha^{*}) \end{bmatrix}$$

 $Y_{e,b,i}$ =Admittance entry associated with external, boundary and internal system parts. $L_{e,b,i}$ =Lower-triangular factor associated with external, boundary and internal system parts. $U_{e,b,i}$ =Upper-triangular factor associated with external, boundary and internal system parts. $S_{e,b,i}$ =Complex power associated with external, boundary and internal system parts. $V_{e,b,i}$ =Bus voltage associated with external, boundary and internal system parts. $W_{e,b,i}$ =Bus voltage inverse associated with external, boundary and internal system parts.

HEM Network Reduction Meshed Networks

• Meshed Networks

$$\begin{bmatrix} \boldsymbol{L}_{ee} & & \\ \boldsymbol{L}_{be} & \boldsymbol{I} & \\ & \boldsymbol{I} \end{bmatrix} \begin{bmatrix} \boldsymbol{I} & & & \\ & \boldsymbol{Y}_{bb} - \boldsymbol{Y}_{be} \boldsymbol{Y}_{ee}^{-1} \boldsymbol{Y}_{eb} & \boldsymbol{Y}_{bi} \\ & \boldsymbol{Y}_{ib} & \boldsymbol{Y}_{ii} \end{bmatrix} \begin{bmatrix} \boldsymbol{U}_{ee} & \boldsymbol{U}_{eb} & \\ & \boldsymbol{I} & \\ & \boldsymbol{I} \end{bmatrix} \begin{bmatrix} \boldsymbol{V}_{e}(\alpha) \\ \boldsymbol{V}_{b}(\alpha) \\ \boldsymbol{V}_{i}(\alpha) \end{bmatrix} = \begin{bmatrix} \boldsymbol{S}_{e}^{*}(\alpha) \boldsymbol{W}_{e}^{*}(\alpha^{*}) \\ \boldsymbol{S}_{b}^{*}(\alpha) \boldsymbol{W}_{b}^{*}(\alpha^{*}) \\ \boldsymbol{S}_{i}^{*}(\alpha) \boldsymbol{W}_{i}^{*}(\alpha^{*}) \end{bmatrix}$$

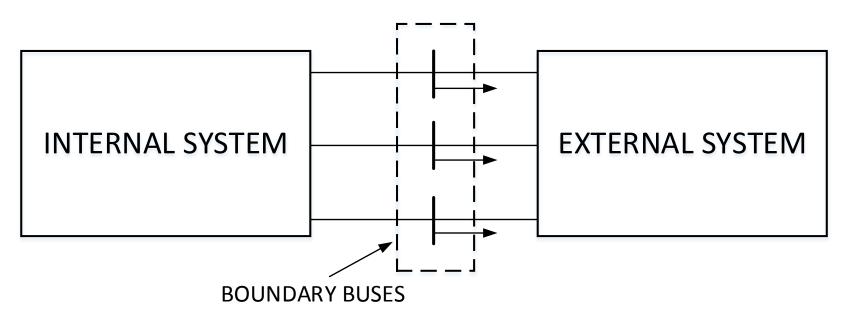
 Multiply by inverse of L matrix and suppress external voltage values.

$$\begin{bmatrix} Y_{bb} - Y_{be}Y_{ee}^{-1}Y_{eb} & Y_{bi} \\ Y_{ib} & Y_{ii} \end{bmatrix} \begin{bmatrix} V_b(\alpha) \\ V_i(\alpha) \end{bmatrix} = \begin{bmatrix} \frac{S_b^*(\alpha)}{V_b^*(\alpha)} + L_{be}L_{ee}^{-1}S_e^*(\alpha)W_e^*(\alpha^*) \\ \frac{S_i^*(\alpha)}{V_i^*(\alpha^*)} \end{bmatrix}$$
Boundary bus injections

HEM Network Reduction Observations on the α line

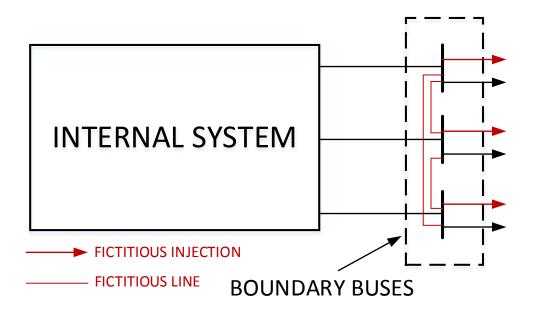
- HEM is theoretically exact on the α line provided generators don't go on var limits.
- Compare with reduced-models using methods that also model voltage/var provided by PV buses:
 - Extended Ward
 - REI

Ward Reduction



 Equivalence the external network by adding fictitious branches between boundary buses and adding fictitious injections to the boundary buses.

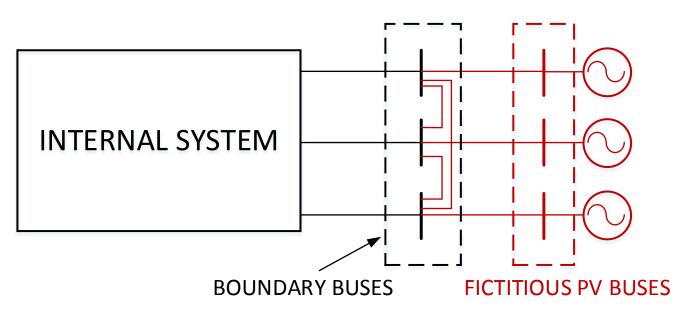
Ward Reduction



 Equivalence the external network by adding fictitious branches between boundary buses and adding fictitious injections to the boundary buses.

Fictitious branches/injections created through partial LU factorization.

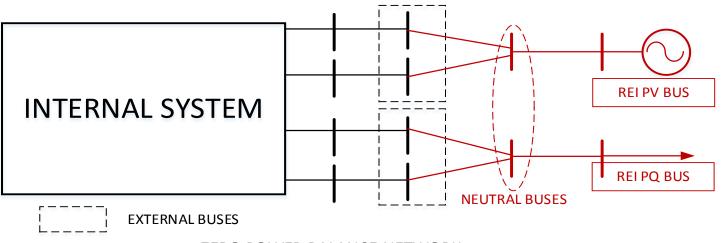
Extended Ward



- Add one fictitious generator bus to each boundary bus.
- Fictitious generator buses only provide reactive support.
- Match the incremental response for the reactive power flow.
 Generators are fictitious and have no identity, no var limits.

REI Reduction

• REI (radial equivalent independent) Reduction

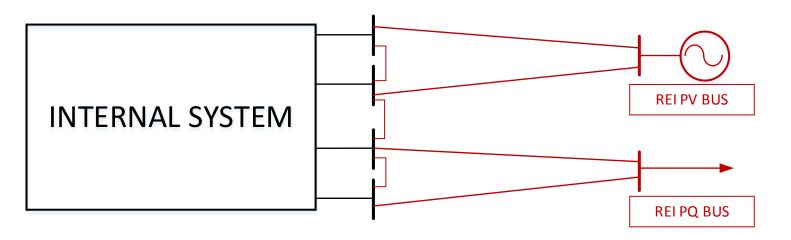


ZERO POWER BALANCE NETWORK

- Group the external buses according to type: PV/PQ.
- Create the zero power balance network.

REI Reduction

• REI (radial equivalent independent) Reduction



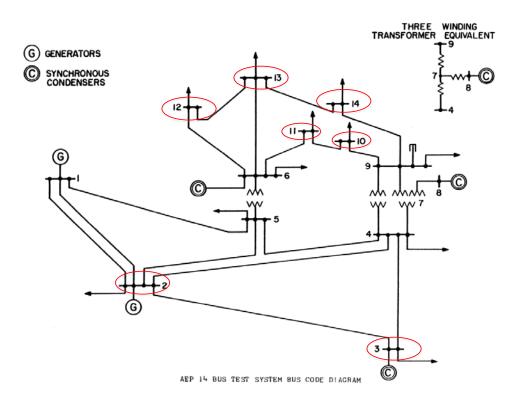
- Group the external buses according to type: PV/PQ.
- Create the zero power balance network.
- Eliminate the external buses and neutral buses to create the REI equivalent.

PSECC Only aggregate var limits may be enforced.

HEM Network Reduction Observations on the α line

- Numerical experiments limited to the α line comparing HEM to Ward, Ex-Ward and REI. (Var limits ignored.)
 - IEEE 14 bus (7 bus internal, 7 buses external)
 - IEEE 118 bus (30 int., 88 ext.)
 - IEEE 118 bus (88 int., 30 ext.))
 - IEEE 118 bus (12 bus backbone)
 - IEEE 300 bus (89 bus backbone)

HEM Network Reduction IEEE 14-bus schematic

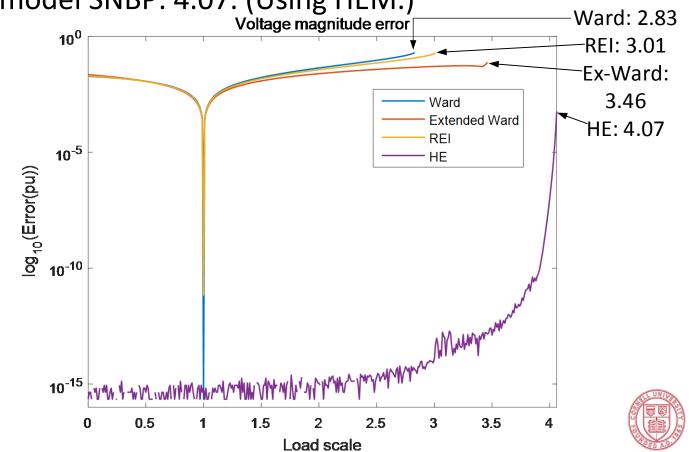


- 7 external buses (red circled)—50% reduction.
- 5 boundary buses (bus 1, 4, 5, 6, 9)
- 2 internal buses (bus 7, 8)

HEM Network Reduction 14 bus (7 int., 7 ext.)

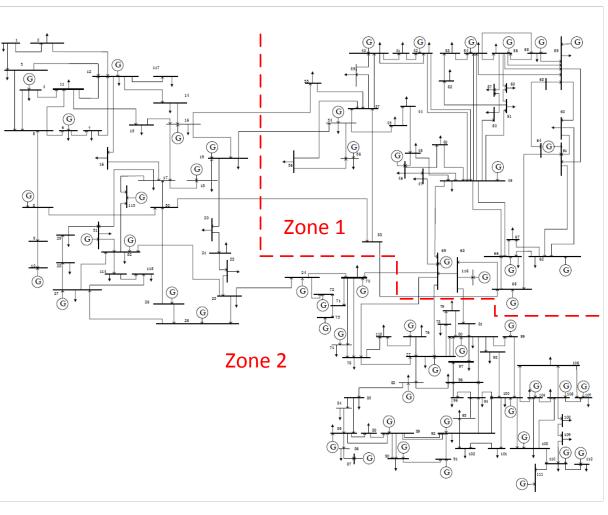
Cornell University

- Voltage mag. error (pu) v. α (scaled load/gen.) V_{Slack} =1.06
- Newton's method, base-case IC used to solve PF for Ward, REI, Extended Ward.
- Full model SNBP: 4.07. (Using HEM.)



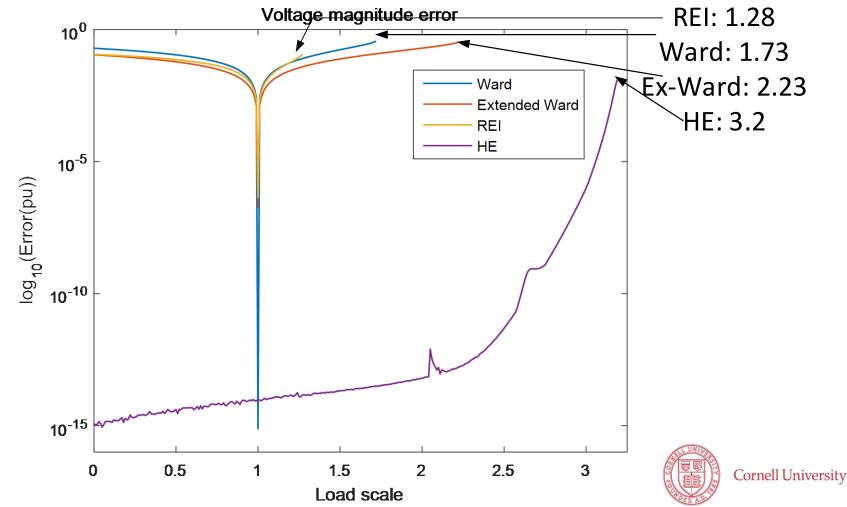
HEM Network Reduction 118 bus schematic

- Three reductions:
- 1. Preserve zone 1
- 2. Preserve zone 2
- 3. Preserve high voltage buses(>138kV)



HEM Network Reduction 118 bus (30 int., 88 ext.)

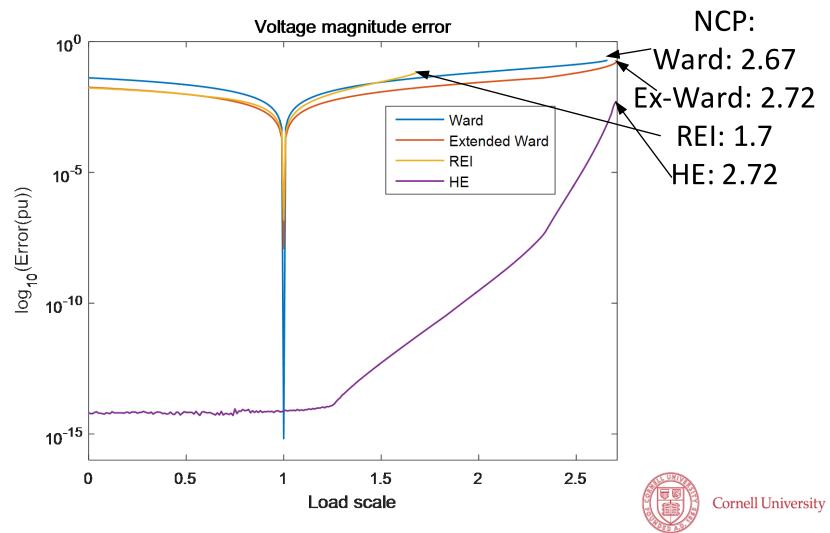
- Voltage mag. error (pu) v. α (75% reduction)
- Full model SNBP=3.2.



HEM Network Reduction

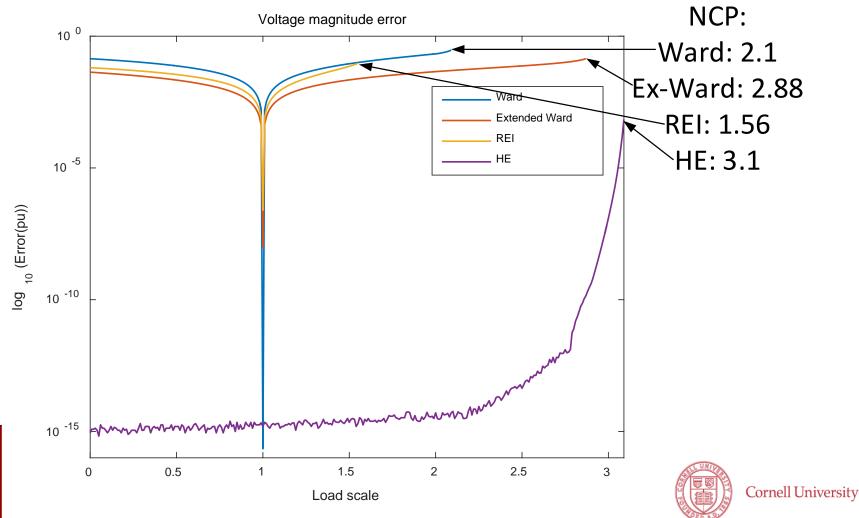
118 bus (88 int., 30 ext.)

- Voltage mag error (pu) v. α (25% reduction.)
- Slack bus change results in full model SNBP=2.72.



HEM Network Reduction 118 bus (12-bus backbone)

- Voltage mag error (pu) v. α (90% reduction.)
- Slack bus change: SNBP=3.1.



HEM Network Reduction

300 bus (backbone 89 int. 211 ext.)

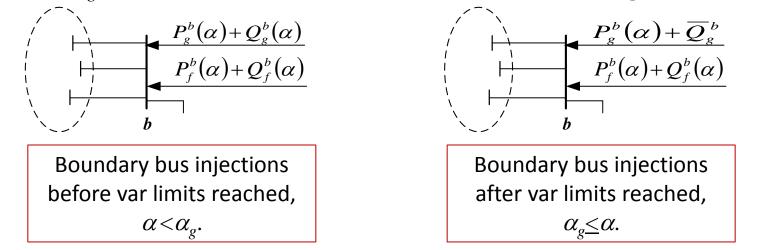
- Plot of voltage mag error (pu) v. α (70% reduction.)
- Full model SNBP: α =1.44
- Newton's method, IC=base-case solution, finds no solution for REI for $0.0 < \alpha < 0.43$.



HEM Network Reduction

Imposing of var limits "on" the α line

- Initial effort.
- Perform HEM network reduction to get boundary bus injections for generators g and f: $P_g^b(\alpha) + jQ_g^b(\alpha)$; $P_f^b(\alpha) + jQ_f^b(\alpha)$.
- Let α_g be point at which generator "g" var limits, \bar{Q}_g^b , are encountered.

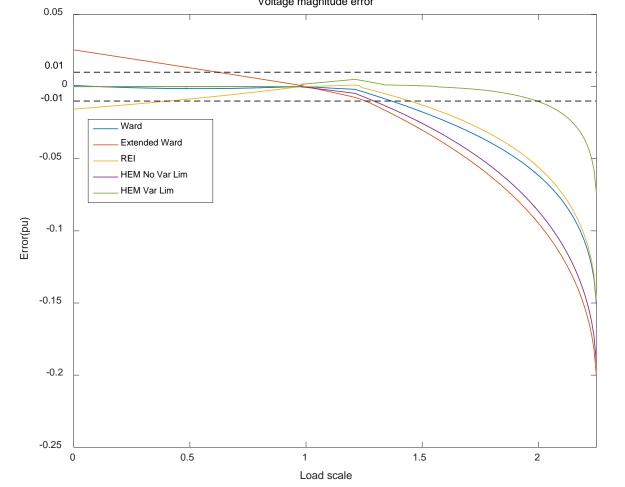


- Model with $\alpha_{g} < \alpha$ are approximate since all injections assume $Q_{g}^{b}(\alpha)$ behavior.
- Build reduced model with no gens on var limits: No simple way to analytically approximate effect of going off var limits.

HEM Network Reduction Imposition of var limits

Cornell University

- Voltage mag. error (pu) v. α (50% reduction)
- 14-bus system: Gen 2 hits var limits at α =1.34; Synch. Condenser hits var limits at α = 0.98.
- SNBP=2.25 with these var limits. 0.01 pu accuracy at α =2.0 (V_{min} =0.853 pu)

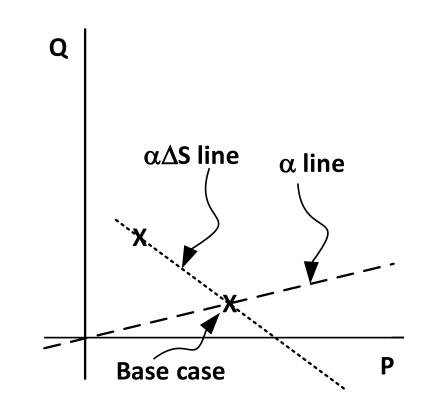


Next Steps

Next Steps

- Theory
 - Structure of nonlinear inverse injection functions.
 - Var limiting
 - Inclusion of phase shifters.
 - α line not coincident with load profile.
 - Multiple α lines, i.e., multivariate approximants, ex: Chisholm approximants.
 - Off the α line.
 - Application to the stochastic/probabilistic power flow problems.
- Numerical experimentation
 - Verify theory.

• α line not collinear with the load/generation profile.



Dinner

