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Motivation

With increasing participation of variable and uncertain
resources on both sides of the power system, operational
decisions require stochastic methods. Challenges include:

Characterizing uncertainty, scenario selection

Computational tractability, large networks

Flexibility,

for different types of uncertainty (wind, solar, responsive
demand)

for inter-temporal constraints of energy storage



Overview

Scalable Stochastic Unit Commitment 
(Chance-constrained Programming) 

 

Incorporating Storage Decisions in 
Dispatch  

(Approximate Dynamic Programming) 
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Presentation Outline

We then will present progress on:

1 Integration of storage through stochastic dual dynamic
programming (SDDP); and,

2 Testing of scenario reduction algorithms using the
Multi-period Optimal Scheduling Tool (MOST).



Energy Storage

With the growth of renewable generation, energy storage has
been proposed as a method for managing uncertainty.

Most of previous research:

Deals with a single storage unit and a single wind farm; and

Do not consider power network constraints.

It is clear that:

network constraints increase the size of the problem, and
therefore its complexity; and

the number of storage and wind farm units increase the
search space;

a critical issue, in particular in the context of the
intertemporal constraints, which are best dealt with by
stochastic dynamic programming.



Economic Dispatch Problem with Storage

We consider an economic dispatch problem for a network
comprising |G| conventional generators, |M | wind farms and |S|
storage. We aim to find the generation and storage policy that
minimizes the operating cost over of finite horizon of T hours:

min

{
E

[
T∑
t=1

ct (·)

]}
Subject to, for 1 ≤ t ≤ T :

Φ(pt, dt, wt) = 0 Power balance equations

Θ(θt, et) = 0 Power flow equations

Ξ(st,∆t) = 0 Storage dynamics

Ψt ≤ Ψt ≤ Ψt Box and ramping constraints



Representation under Stochastic Dynamic Programming

Previous problem is a sequential decision problem.

Current state Decisions

New information

Next state

Transition filter

Figure: Illustration of the information decision structure

Stochastic dynamic programming (SDP) is then suited to
the problem.

SDP decomposes (by period) the problem into subproblems
in a coordinated way.

For each possible state, an optimization problem is solved
seeking for the best trade-off between utilizing the
resources “today” and leaving them for the future.



SDP Formulation

For t = T, T − 1, · · · , 1:

Ft(st, pt−1, wt−1) =min
{
ct (·) + E

[
Ft+1(st+1, pt, W̃t)

]}
S.t. Φ(pt, dt, wt) = 0

Θ(θt, et) = 0

Ξ(st,∆t) = 0

Ψt ≤ Ψt ≤ Ψt

Ft+1(st+1, pt, wt), called cost-to-go is the cost from period
t+ 1 through the end of the horizon.

Two sources of complexity:

Computation of an expectation

Optimization step for each state value (st, pt−1, wt−1)



Curse of dimensionality

The problem cannot be
solved for all discrete
state values
(st, pt−1, wt−1). Example:

With 5 wind turbines, 5
storage devices and 5
generators;

Each dimension
discretized into 10
levels (in each time
period);

In total
105 × 105 × 105 =
1015 grid points.
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Figure: Example of a two-dimension grid



Stochastic Dual Dynamic Programming

SDDP does not discretize the state space, rather samples it.

Replace E
[
Ft+1(st+1, pt, W̃t)

]
(assumed to be convex) with

some lower bound V̂t+1(st+1, pt, wt).

Cost-to-go

State

Vt+1

Vt+1

Ht+1

Ht+1
Ht+1

1

2

3

Figure: Illustration SDDP approximation

V̂t+1(st+1, pt, wt) := max
i
{H i

t+1(st+1, pt, wt)|i ∈ I}



SDDP Approximation of the Problem

For t = T, T − 1, · · · , 1

F̂t(st, pt−1, wt−1) = min

{
T∑
t=1

ct (·) + ρt+1

}
(1)

S.t. Φ(pt, dt, wt) = 0 (2)

Θ(θt, et) = 0 (3)

Ξ(st,∆t) = 0 (4)

Ψt ≤ Ψt ≤ Ψt (5)

ρt+1 ≥ c̃it+1 + g̃sit+1
st+1 + g̃pitpt + g̃wi

t
wt, 1 ≤ i ≤ I

(6)

[c̃it+1, g̃pit , g̃wi
t
] are computed in period t+ 1 using dual prices.



Algorithm Scheme

Sequence of backward and forward passes:
 

Set k = 0 

For each hour t = 
T, T-1,…,1, find an 
approximation for 
the cost function 
using an 
approximation for 
the  future 
expected cost. 

For each hour t = 
1,…T, simulate the 
operation of the 
network using the 
approximations 
built in the 
previous iteration. 

Is the performance 
satisfactory? 

Yes No 

Stop 

Set k = k+1 

Figure: SDDP algorithm to build the approximations and sample the state space



Results Overview

Illustration on IEEE 9-bus network

Comparison with SDP on IEEE 9-bus network

Scalability testing on different network sizes



Optimal storage strategy
IEEE 9-bus network
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Figure: Example of storage trajectory when charging (discharging)
cost is low



Optimal storage strategy (cont.)
IEEE 9-bus network
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Figure: Example of storage trajectory when charging (discharging)
cost is high



Comparison with SDP
IEEE 9-bus network : 100 simulations each run

Table: CPU time in seconds: SDDP and SDP

Method Run 1 Run 2

SDDP 499.35 1 876.22

SDP 13 038.16 12 726.88

Table: Solution cost: SDDP and SDP

Method
Run 1

Min Max Mean Stand. deviation

SDDP 78 622.29 162 215.38 126 872.83 21 812.53

SDP 75 392.76 161 872.07 125 968.26 22 922.10

Method
Run 2

Min Max Mean Stand. deviation

SDDP 88 691.21 164 333.09 134 267.42 19 210.77

SDP 85 882.05 164 333.09 133 981.13 19 657.52



Scalability Testing Networks:

Table: Test networks’ characteristics

Case # of buses # of generators # of trans. lines

1 30 6 41

2 57 7 80

3 89 12 210

4 118 54 186

5 300 69 411



Example of Optimal Storage Strategy
IEEE 118 bus-network
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Figure: Mean storage trajectory (over 100 simulations) : five storage
units and one wind farm
Optimal strategy: Use the most efficient (charging/discharging
or storage) batteries.



Solution time as a function of network sizes and state
space dimension

Table: Computation time in seconds for different number of buses,
storage facilities and wind farms

# buses |S| |M | Time # buses |S| |M | Time

30 1 1 1 229.80 118 1 1 2 399.35
30 5 1 1 582.67 118 5 1 2 444.99
30 5 5 1 323.88 118 5 5 2 453.89
57 1 1 1 388.09 118 10 5 2 179.62
57 5 1 1 454.47 118 20 10 2 248.39
57 5 5 1 396.26 300 1 1 4 159.16
57 10 5 1 597.71 300 5 1 4 234.72
89 1 1 1 570.67 300 5 5 4 570.01
89 5 1 1 709.68 300 10 5 4 617.65
89 5 5 1 575.09 300 20 10 5 036.37
89 10 5 1 737.32

The solution time seems to remain reasonable as the size of the
network and the dimension of the state space increase.



Summary

SDDP allows optimization of the trade-off between
here-and-now reward against the value of future flexibiity

SDDP manages the dimensionality problem, to allow
computational tractability,

Is relatively easy to implement,

Overall, the approach allows a fair trade-off between
solution time and accuracy



Testing of Scenario Selection via Band Depth
Clustering



Objectives of Scenario Selection
Finding scenarios

The goal of scenario selection is the identification of a relatively
low cardinality set of representatives, that sufficiently represent
the uncertainty set. In this case,

Each scenario will be a time series describing the wind
speed over the course of a 24-hour day

Each time series should be a plausible observation (not
smoothed)

The set of time series should reflect a range of possible
wind behaviors

A data-driven approach is taken to this problem.



Clustering Overview

Clustering is performed on a set of previous observations

One representative scenario is taken from each cluster

Cluster sizes suggest probabilities to assign to each scenario

This process requires both a clustering algorithm and a
measure of similarity/distance between observations

Conventional measures of distance like the Lp norm do not
perform well in high dimensions, or in the presence of
nonconstant variance and skewed data.



Depth statistics

We turn to depth statistics in order to examine observations
relative to one another, not an external model.

Depth statistics give centrality of an observation relative to
a given set

One-dimensional version: median and quantiles

Many extensions to different types of data



The band depth

Modified band depth: Lopez-Pintado and Romo (2009)

Let x represent an observation, x(t) represent the value at
time point t, and X denote the entire set of observations

Each band b is defined by a set of observations drawn from
X

The limits of the band at each t are defined by the max
and min of the observations defining the band



Band Depth Clustering

Previoulsy, we described the use of band depth clustering,
which

uses band depth as a measure of similarity between
observations

measures distance between observations based on
trajectory shape, instead of overall level

becomes a proven distance metric



The band depth

Any other observation x = {x(t)} from the dataset can be
compared to this band

Let T b(x) be the set of all t for which x(t) is in the band b

Given x and b, consider the proportion of time x falls
within the band: Tb(x)/T

We can calculate Tb(x)/T for any band b



Depth to distance

Averaging over all bands gives a measure of depth, or
centrality, for x relative to the set X

To do unsupervised clustering, we must extend depth to
pairwise distances

For any x and y from the dataset, find a distance Dxy

We introduce the band distance: Tupper, Matteson, and
Anderson (2015)



The band distance

Given two observations x and y from the simulated dataset,
similar observations will fall into each band at similar times

Compare T b(x) and T b(y) using Jaccard similarity (a set
similarity measure)



The band distance

Given observations x and y and a band b, we get a
bandwise similarity score:

sbxy =
|Tb(x) ∩ Tb(y)|
|Tb(x) ∪ Tb(y)|

This is converted to a distance score for each band:

dbxy = 1− sbxy

The overall distance is the average score over b ∈ Bxy, the
set of all bands containing x or y at any time:

Dxy =
1

|Bxy|
∑

b∈Bxy

dbxy



The band distance
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The band distance

Given observations x and y and a band b, we get a
bandwise similarity score:

sbxy =
|Tb(x) ∩ Tb(y)|
|Tb(x) ∪ Tb(y)|

This is converted to a distance score for each band:

dbxy = 1− sbxy

The overall distance is the average score over b ∈ Bxy, the
set of all bands containing x or y at any time:

Dxy =
1

|Bxy|
∑

b∈Bxy

dbxy



Properties of the band distance

Considers observations only relative to the rest of the
dataset

Handles heteroskedasticity

Is invariant under transformations that preserve
observations’ order at each t

Involves no user-defined parameters

Can be applied to any vectorized data

Meets definition of a distance metric



Testing Scenario Selections “In Situ”

The measure of a scenario selection tool, is the ability to make
better decisions with the same number of scenarios. To test
this, we use

The IEEE 30-bus network with one generator assumed to
be wind

Hourly wind speed data are drawn from NREL’s EWITS
database

Matpower Optimal Scheduling Tool (MOST)

Divide the year into six two-month periods to minimize
effect of seasonality

Three years of data provide approx. 180 observations per
season



Testing Scenario Selection

We then test the efficacy of each scenario set in characterizing
the wind behavior of that season.

clustering-
based 

scenarios (k) 

3 years’ wind 
trajectories 

Optimal UC 
schedule 
(MOST) 

Solve ED 
problem for 
all samples 

Compute 
average cost, 
load-shedding 

Better unit commitment decisions will lead to lower average
dispatch costs and/or lower probability of lost load.



Testing Scenario Selection

Results show that using band distance leads to greater
reliability with comparable cost to Euclidean distance.

Average difference in dispatch cost favors BDC, but is very
small, in less constrained situations

The system is most restricted in September-October
season,

For k = 10, 15, and 20, Euclidean distance leads to loss of
load on 17, 17, and 11 days

Band distance leads to loss of load on 0, 14, and 0 days

For a risk-averse operator, this is a strong argument for using
the band distance



Testing Scenario Selection

As a result of higher LOLE, the average cost of system dispatch
is lower for solutions based on BDC than on the more common
Euclidean distance metric.

Average daily system generation
costs, incorporating lost load penalty,
across all days in September-October.
Dashed line shows the cost when
using Euclidean distance; solid line,
with band distance. Error bars show
1 standard deviation of pairwise
differences.



Summary of Band Depth Testing

Initial results indicate that BDC is

an improved selection approach,

provides more secure solutions with the same number of
scenarios and similar cost

is flexible and can incorporate multiple wind farms,
allowing for correlation among sites



Concluding Remarks

Optimizating Interaction of Renewables and Storage (SDDP)

Incorporates realism of dynamic programming decisions

Allows multiple wind farms and storage units

Reasonable scaling of computational cost

Data Driven Scenario Selection (Band Depth Clustering)

More effective selection of scenarios

Improved stochastic programming solutions

Flexible to incorporate multiple correlated wind farms
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