The Sharing Economy for Grid2050

Kameshwar Poolla UC Berkeley

May 19, 2016

Shared Electricity Services

- The New Sharing Economy
 - cars, homes, services, ...
 - business model: exploit underutilized resources
 - huge growth: \$40B in 2014 \rightarrow \$110B in 2015

What about the grid?

- what products/services can be shared?
- what technology infrastructure is needed to support sharing?
- what market infrastructure is needed?
- is sharing good for the grid?

Three Opportunities

ex 1: Shared Storage

- firms face ToU prices
- install storage C, excess is shared

ex 2: Sharing Distributed Generation

- homes install PV
- excess generation is sold to others
- net metering isn't really sharing ...
 price of excess is fixed by utility, not determined by market condn

ex 3: Sharing Demand Flexibility

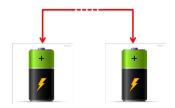
- utilities recruit flexible customers
- flexibility can be modeled as a virtual battery
- battery capacity is shared

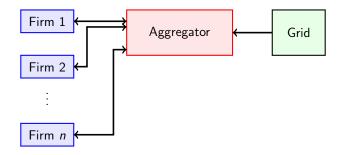
Challenges for Sharing in the Electricity Sector

Power tracing

electricity flows according to physical laws undifferentiated good cannot claim x KWh was sold by i to firm j

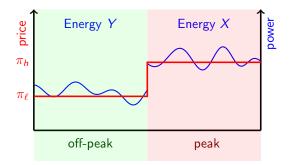
Regulatory obstacles


early adopters will be behind-the-meter single PCC to utility firms can do what they wish outside purvue of utility


Paying for infrastructure

fair payment to distribution system owners many choices: flat connection fee, usage proportional charge, ...

Sharing Electricity Storage


Dileep Kalathil, Chenye Wu Pravin Varaiya, Kameshwar Poolla

- *n* firms, facing time-of-use pricing
- Ex: industrial park, campus, housing complex
- firm k invests in storage C_k for arbitrage
- unused stored energy is traded with other firms
- AGG manages trading & power transfer
- collective deficit is bought from Grid

ToU Pricing and Storage

- random consumption X, Y
- -F(x) = CDF of X
- value of storage: firm can move some purchase from peak to off-peak

Consumption Model

Energy demand for firm k is random
 X_k in peak period, CDF F_k(·)
 Y_k in off peak period

Collective peak period demand

$$X_c = \sum_k X_k$$
, CDF $F_c(\cdot)$

Prices and Arbitrage

- π_s capital cost of storage amortized per day over battery lifetime
- π_h | peak-period price
- π_{ℓ} off-peak price
- π_{δ} | difference $\pi_h \pi_\ell$

Comments

- $-\,$ today $\pi_{s}\approx$ 20¢, but falling fast
- $-\,$ rarely happens today, but many more opportunities tomorrow \ldots
- ex: PG&E A6 tariff ... $\pi_{\delta} \approx 25$ ¢> $\pi_s = 20$ ¢

Arbitrage constant

$$\gamma = rac{\pi_\delta - \pi_s}{\pi_\delta} \qquad \gamma \in [0, 1]$$

- 1 Firms are price-takers for ToU tariff ... consumption is not large enough to influence π_h, π_ℓ
- 2 Demand is inelastic ... savings from using storage do not affect statistics of X_k, Y_k
- 3 Storage is lossless, inverters are perfectly efficient temporary assumption
- 4 All firms decide on their storage investment simultaneously temporary assumption

No Sharing: Firm's Decision

Daily cost components for firm k

 $\pi_s C_k$ amortized cost for storage $\pi_h(X_k - C_k)_+$ | peak period: use storage first, buy deficit from grid $\pi_{\ell} \min\{C_k, X_k\}$ off-peak: recharge storage

Expected cost

$$J_k(C_k) = \pi_s C_k + \mathbb{E} \left[\pi_h (X_k - C_k)_+ + \pi_\ell \min\{C_k, X_k\} \right]$$

$CDF F_k(x)$ Theorem Stand alone firm Optimal storage investment $C_k^* = \arg \min_{C_k} J_k(C_k)$ $= F_{\mu}^{-1}(\gamma)$

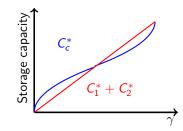
x

Discussion

• Without sharing, firms make sub-optimal investment choices:

- firms may over-invest in storage! not exploiting other firms storage, if γ is large
- or under-invest! not taking into account of profit opportunities, if γ is small
- More precisely:
 - optimal storage investment for collective

$$C_c^* = F_c^{-1}(\gamma), \quad \sum_k X_k = X_c \sim F_c(\cdot)$$


- total optimal investment for stand-alone firms $\sum_{k} C_{k}^{*}$
- under-investment $C_c^* > \sum_k C_k^*$ over-investment: $C_c^* < \sum_k C_k^*$

Example: Two Firms

 $-X_1, X_2 \sim U[0,1]$, independent

- individual investments: $C_k^* = F_k^{-1}(\gamma) = \gamma$
- collective investment: $C_c^* = F_c^{-1}(\gamma)$ where $X_c = X_1 + X_2$

$$C_c^* = \begin{cases} \sqrt{2\gamma} & \text{if } \gamma \in [0, 0.5] \\ 2 + \sqrt{2 - 2\gamma} & \text{if } \gamma \in [0.5, 1] \end{cases}$$

Sharing Storage

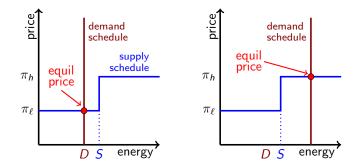
- Firm k has surplus energy in storage $(C_k X_k)^+$
 - $-\,$ can be sold to other firms who might have a deficit
 - willing to sell at acquisition price π_ℓ

Supply and demand

- collective surplus:
$$S = \sum_{k} (C_k - X_k)^+$$

- collective deficit: $D = \sum_{k} (X_k - C_k)^+$

Spot market for sharing storage


- if S > D firms with surplus compete energy trades at the price floor π_{ℓ}
- if S < D firms with deficit must buy some energy from grid energy trades at price ceiling π_h

Spot Market

Market clearing price

$$\pi_{eq} = \begin{cases} \pi_I & \text{if } S > D \\ \pi_h & \text{if } S < D \end{cases}$$

Random, depends on daily market condns

Firm's Decisions Under Sharing

Expected cost for firm k

 $J_k(C_k | C_{-k}) = \pi_s C_k + \pi_I C_k + \mathbb{E}[\pi_{eq}(X_k - C_k)^+ - \pi_{eq}(C_k - X_k)^+]$

- Storage Sharing Game
 - players: *n* firms, decisions: storage investments C_k
 - optimal investment C_k^* depends on the investment of other firms
- Expected cost for collection of firms $\sum_k J_k$
 - simplifies to: $J_c(C_c) = \pi_s C_c + \pi_g \mathbb{E}[(X_c C_c)^+]$
 - like a single firm without sharing
- Social Planner's Problem

$$\min_{C_c} J_a(C_c) \qquad \text{solution:} \quad C_c^* = F_c^{-1}(\gamma)$$

Firm's Decisions Under Sharing

Theorem

- (a) Storage Sharing Game admits unique Nash Equilibrium
- (b) Optimal storage investments:

$$C_k^* = \mathbb{E}[X_k \mid X_c = C_c], \text{ where } C_c = \sum_k C_k^*, F(C_c) = \gamma$$

- (c) Nash equilibrium supports the social welfare
- (d) Equilibrium is coalitional stable no subset of firms will defect
- (e) Nash equilibrium is also the (unique) cooperative game equilibrium

Not a competitive equilibrium: firms account for their influence on π_{eq}

$$\mathbb{E}[X] = m, \operatorname{cov}(X) = \Lambda \quad \Longrightarrow \quad C^* \approx m + \frac{\Lambda \mathbf{1}}{\mathbf{1}^T \Lambda \mathbf{1}} (C_c^* - \mathbf{1}^T m)$$

Lossy Storage

More realistic storage model

- charging efficiency $\eta_i \approx 0.95$
- $-\,$ discharging efficiency $\eta_o\approx 0.95\,$
- daily leakage ϵ (holding cost)

Storage parameters modify arbitrage constant

Theorem

Optimal investment of collective is

$$C_{a}^{*} = rac{1}{\eta_{o}} \cdot F_{a}^{-1}(\gamma), \quad \text{where } \gamma = rac{\pi_{h}\eta_{o}\eta_{i} - \pi_{\ell} - \eta_{i}\pi_{s}}{\pi_{h}\eta_{o}\eta_{i} - \pi_{\ell}(1-\epsilon)}$$

Sequential Investment Decisions

- Collective of n firms have optimally invested Cⁿ in storage
- Now firm F_{n+1} want to join the club
- Optimal investment of new collective is Cⁿ⁺¹

Theorem

Optimal storage investment is extensive, i.e. increases as new firms join

 $C^{n+1} \ge C^n$

Who benefits?

- F_{n+1} is better off by joining
- collective is bettor off when F_{n+1} joins
- but firms in the collective may not individually benefit! need side payments

• Optimal ownership redistributes when F_{n+1} joins

$$C^n = (\alpha_1, \cdots, \alpha_n) \rightarrow C^{n+1} = (\beta_1, \cdots, \beta_n, \beta_{n+1})$$

Actions

- new firm F_{n+1} pays the collective $\pi_s \beta_{n+1}$
- receives rights and revenue stream for β_{n+1} units of storage
- collective invests in $C^{n+1} C^n$ additional storage
- $-\,$ internal exchange of money and storage ownership within collective

Physical Implementation

Firms may monetize storage in many ways

- ToU price arbitrage
- shielding from critical peak prices
- local voltage support
- We have considered *energy sharing* ... ignored when the energy is to be traded within peak period
- Physical trading of power requires some coordination
 - Stanford's PowerNET
 - 3-phase inverter
 - control of charging/discharging
 - comm module to coordinate charge/discharge schedule

Storage location and management

- centralized, managed by AGG, leasing model (needs 1 inverter)
- distributed, located at firms (needs *n* inverters)

Market Implementation

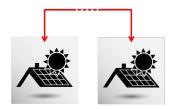
Theorem

No pure storage play:

$$X_k \equiv 0 \implies C_k^* = 0$$

Therefore AGG is in a neutral financial position

Privacy and market clearing

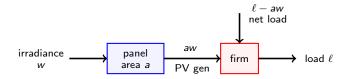

- to determine its investment C_k^* , firm k need knowledge of collective investment and statistics
- informed by neutral AGG
- AGG determines clearing price π_{eq} each day

Other market choices?

- bulletin board for P2P bilateral trades
- matching market hosted by AGG

Sharing PV Generation

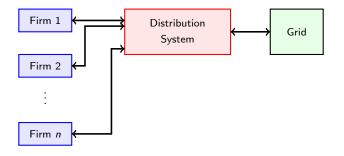
Jared Porter, Yunjian Xu Pravin Varaiya, Kameshwar Poolla



Set-up

• *n* homes or firms, indexed by k

• time slots
$$t = 1, \cdots, T$$


$$\begin{array}{ll} \ell_k(t) & \text{random load of firm } k \text{ in slot } t \\ w_k(t) & \text{random irradiance KW/m}^2 \text{ at firm } k \text{ in slot } t \\ a_k & \text{panel area, decision variable} \\ a_k w_k(t) & \text{generation from PV in slot } t \end{array}$$

Notation: Average Expectation

$$\overline{\mathbb{E}}\left[x \mid y\right] = \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[x(t) \mid y(t)\right]$$

Set-up and Prices

- firms invest in PV
- $-\,$ surplus gen shared among firms
- collective deficit bought from grid
- collective surplus sold to grid

π_s	capital cost of PV per m^2 amortized over T time slots
$\pi_{g} \ \pi_{nm}$	grid electricity price net-metering price

Sharing PV Generation

• Firm k has surplus energy $(a_k w_k - \ell_k)^+$

- can be sold to firms who have a deficit, or sold to grid
- price floor π_{nm}
- Supply and demand
 - collective surplus: $S = \sum_{k} (a_k w_k \ell_k)^+$
 - collective deficit: $D = \sum_{k} (\ell_k a_k w_k)^+$
- Spot market for sharing PV generation
 - runs in each time slot
 - if S > D firms with surplus compete energy trades at the price floor π_{nm}
 - if S < D firms with deficit must buy some energy from grid energy trades at price ceiling π_g

Clearing Price for Shared PV Generation

Clearing price in spot market

$$\pi_{eq} = \begin{cases} \pi_{nm} & \text{if } S > D \\ \pi_g & \text{if } S < D \end{cases}$$

Random, depends on market condns in time slot t

• Define random sequences for $t = 1, \cdots, T$

 $\begin{array}{l} L \\ G \end{array} \begin{vmatrix} \sum_k \ell_k(t) & \text{collective load} \\ = \sum_k a_k w_k(t) & \text{collective PV generation} \\ \end{array}$

Market clearing price simplifies to

$$\pi_{eq} = \begin{cases} \pi_{nm} & \text{if } G > L \\ \pi_g & \text{if } G < L \end{cases}$$

Cost Functions and Decision Problems

Cost components for firm k in time slot t

$$\begin{array}{c|c} \pi_s a_k & \text{amo} \\ \pi_{eq}(\ell_k - a_k w_k)^+ & \text{defic} \\ -\pi_{eq}(\ell_k - a_k w_k)^- & \text{surp} \end{array}$$

amortized cost of PV panels deficit bought from other firms or grid surplus sold to other firms or grid

Expected cost for firm k

depends on investment decisions a_{-k} of other firms

$$J_k(a_k \mid a_{-k}) = \pi_s a_k + \overline{\mathbb{E}} \left[\pi_{eq} (\ell_k - a_k w_k) \right]$$

Firm k decision problem

$$\min_{a_k} J(a_k \mid a_{-k})$$

Social Planner's problem

$$\min_{a_1,\cdots a_n} J_c = \sum_k J_k$$

Common Irradiance

Theorem

- Assume $w_k = w$ for all firms.
 - (a) Unique Nash equilbrium
 - (b) Total PV investment A solves

$$0 = \pi_s - \pi_g \cdot p \cdot \mathbb{E} \left\{ w \mid X > 0 \right\} - \pi_{nm} \cdot (1 - p) \cdot \mathbb{E} \left\{ w \mid X < 0 \right\}$$

where p = Pr(L > Aw)

(c) Optimal investment of firm k is

$$\frac{a_k}{A} = \frac{\overline{\mathbb{E}} \left\{ \ell_k \mid L = Aw \right\}}{\overline{\mathbb{E}} \left\{ L \mid L = Aw \right\}}$$

(d) Supports social welfare !!

• a_k is proportional to expected load ℓ_k conditioned on L = Aw

Diverse Irradiance

- bound maximum PV area investment for firm k

 $0 \leq a_k \leq m_k$

- else, problem is ill-posed only most favorable location invests in PV all others invest $a_k = 0$
- firms influence clearing price π_{eq}
- Cournot competition

Theorem

- (a) Unique Nash equilbrium
- (b) Does not support social welfare

Deep Penetration

- bound maximum PV area investment for firm $k \quad 0 \le a_k \le m_k$
- large number of firms no single firm can influence statistics of clearing price π_{eq}
- asymptotically perfect competition

Theorem

- (a) Unique Nash equilibrium
- (b) Optimal investments threshold policy

$$a_k = \begin{cases} m_k & \text{if} \quad \mathbb{E}\left[w_k | L > G\right] > \theta \\ 0 & \text{else} \end{cases}$$

(c) Supports social welfare

 $\overline{\mathbb{E}}[w_k \mid L > G]$ measures merit of site k

Computing Threshold $\boldsymbol{\theta}$

- θ is the unique solution of

$$\theta = \frac{\pi_s}{\pi_g p}, \quad p = \Pr\left\{L > G\right\}$$

bisection search

- 1 start with selected firms
- 2 compute PV gen of selected firms
- 3 compute prob of collective deficit
- 4 update threshold
- 5 update selected firms

$$S = \sum_{k \in \mathbb{S}} a_k w_k$$

$$p = \Pr \{ L > G \}$$

$$\theta = \frac{\pi_s}{\pi_g p}$$

$$S \leftarrow \{ k : \overline{\mathbb{E}} [w_k \mid L > G] > \theta \}$$

Synthetic Example

- 1000 homes, max panel area = 8 m^2
- Irradiance data from SolarCity, load data from NREL
- $-\pi_g=$ 0.17 \$ per KWh
- $-~\pi_{s}=0.006$ \$ per $m^{2}h~(\approx$ 3.2¢ per watt levelized cost, no subsidy)

Two cases:

- status quo: net metering with annual cap
- sharing with $\pi_{nm} = 0$: no net metering

Results:

- 7% more PV panel area, 10% more production from PV
- 3.2 % lower end-user electricity costs lower
- under status quo
 - homes with good PV production & low load underinvest homes with poor PV production & high load overinvest
- sub-optimal investment decisions fixed by sharing

The 50% Subsidy

Assume quadratic generator cost curves (linear price)

 $\pi_g = \alpha \cdot X$ PV generation influences grid price π_g

Theorem

Common irradiance $w_k = w$, quadratic generation costs, single bus.

- (a) Unique Nash equilibrium
- (b) Does not support social welfare

(c) Suppose all firms receive 50% solar subsidy $\pi_s \rightarrow 0.5\pi_s$ then Nash equilibrium supports social welfare

- Who pays for the subsidy? not sure ...
- Diverse irradiance?
 - conjecture is that subsidy should depend on location
 - favorable PV locations receive larger subsidy

Utopia in Grid2050

What if ...

- Solar PV is universal ... homes, businesses, industry
- Everyone shares
- Utilities own the wires ... transmission and distribution assets
- Large generators supply collective net load $X = (L G)^+$
- Research agenda:
 - analyze the economics of this utopia
 - revisit utility business model
 - emissions? effective price of electricity?
 - sensitivity to PV prices, penetration, ...
 - inform policy
 - argue that Sharing in the Electricity Sector benefits everyone ...