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Background and Motivation
Demand Response Resources (DRRs) must be aggregated to
participate in wholesale electricity markets:

I Energy
I Capacity
I Ancillary services

DRRs have the potential to contribute a considerable amount of
energy and capacity, e.g.,

I 10% of peak demand in MISO in 2014
I 7% of peak demand in PJM in 2014

Mechanisms and benefits of coordination of DRRs to provide ancillary
services are relatively well understood

Virtually no work on assessing the impact of uncertain phenomena on
the reliability of DRR aggregation systems
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Objective

Objective
To develop a reliability assessment framework to evaluate the impact of
uncertainty on the capacity of DRR aggregation systems

Uncertain phenomena include:
Packet drops and permanent failures in communication channels
between aggregator and DRRs

Random failures in the processors utilized to implement DRR local
control and other hardware

DRR participants opt out randomly
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DRR Aggregation System Architecture

The aggregator:
I Receives from the ISO a regulation signal, r(t), to be followed
I Measures the state of each unit i, xi(t)
I Determines the power change from baseline power of each unit i, ui(t)
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DRR Individual Dynamics
Focus on DRRs with the ability to store thermal energy

Aggregator coordinates response of 1, 2, · · · , N DRRs

Virtual battery model for DRR i:

d

dt
xi(t) = −aixi(t)− ui(t))

−Ci ≤ xi(t) ≤ Ci

−ni ≤ ui(t) ≤ ni

ai Dissipation
Ci Up/down capacity

ni, ni Discharge/charge rate limits
xi(t) State of charge
ui(t) Commanded signal from aggregator
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Control Scheme

Aggregator measures the xi(t)’s and determines the ui(t)’s, so that∑N
i=1 ui(t) = r(t) as follows:

ui(t) = Ci∑
j Cj

r(t) +
Ci

∑N
j=1 ajxj(t)∑N
j=1Cj

− aixi(t)

Closed-loop DRR dynamics:

ẋi(t) = −aixi(t)− ui(t) = − Ci∑N
j=1Cj

(r(t) +
N∑

j=1
ajxj(t))

r(t) Regulation signal from ISO/RTO
xi(t) State of charge
ui(t) Commanded signal from aggregator
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DRR Aggregation System Model

This control algorithm is a “fair” allocation mechanism:
I Participant units reach their energy limit at the same time

I Units’ state variables are proportional to their energy limits at all times,
i.e., xi(t)

Ci
= xj(t)

Cj
=: z(t), ∀i, j

Original N -th order model reduces to a first-order model:

ż(t) = −
∑N

j=1 ajCj∑N
j=1Cj

z(t)− 1∑N
j=1Cj

r(t)

We refer to z(t) as the normalized state variable with −1 ≤ z(t) ≤ 1

In the remainder r(t) = r as focus is on capacity characterization
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Incorporating Failure Behavior
Define an indicator variable characterizing DRR operational status:

ηi(t) =
{

1, DRR i is functional at time t
0, otherwise

DRR aggregation system dynamics becomes

ż(t) = −
∑

j ηj(t)ajCj∑
j ηj(t)Cj

z(t)− 1∑
j ηj(t)Cj

r

Define q(t) = (ηi(t))i=1,··· ,N ∈ Q = {0, 1}N to indicate system mode

Failure/repair process is random:
I Failures occur at constant rates, αi, i = 1, 2, . . . , N
I Repairs occur at constant rates, βi, i = 1, 2, . . . , N

The evolution of
I q(t) is described by a Markov process, Q(t)
I z(t) is described by a cont. time cont. state stochastic process, Z(t)
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DRR Aggregation System Stochastic Model

The dynamics of (Q(t), Z(t)) can be captured by a Stochastic Hybrid
System (SHS) model, characterized by
S1. A differential equation describing the evolution of z(t) for fixed q(t)

S2. A collection of transition rate functions defined by component failure
and repair rates determining likelihood of transitions among modes
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State Statistics
Choose a set of “test” functions,

ψ
(m)
i (q, z) := δi(q)zm =

{
zm, q = i

0, q 6= i
,∀i ∈ Q,

the expectations of which are the state conditional moments:
µ

(m)
i (t) := E[ψ(m)

i (Q(t), Z(t))]

By using Dynkin’s formula:
µ̇

(0)
i =−

∑
j∈Oi

λijµ
(0)
i +

∑
j∈Ii

λjiµ
(0)
j , i /∈ F ;

µ̇
(m)
i =− mr∑N

k=1 i[k]Ck

µ
(m−1)
i − (

m
∑N

k=1 i[k]akCk∑N

k=1 i[k]Ck

+
∑
j∈Oi

λij)µ(m)
i +

∑
j∈Ii

λjiµ
(m)
j , i /∈ F ,m ≥ 1

Oi := {j ∈ Q : λij 6= 0} Set of modes to which transitions from mode i occur
Ii := {j ∈ Q : λji 6= 0} Set of modes from which transitions to modes i occur

F Set of ”fail” modes in which
∑N
i=1 q[i]n̄i < r
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Reliability Assessment
Reliability Measure
Probability that the DRR aggregation system can successfully sustain
some r < 0 for a period of time τ :

P (r, τ) =Pr{Z(τ) > −1 ∩Q(τ) /∈ F}
=

∑
i/∈F

Pr{Z(τ) > −1|Q(τ) = i}Pr{Q(τ) = i}

Using Cantelli’s inequality, we have

Pr{Z(τ) > −1|Q(τ) = i} > 1− σ2
i (τ)

σ2
i (τ) + (−1− µi(τ))2

µi(τ) Mean of Z(τ) given Q(τ) = i, equal to µ
(1)
i

(τ)
µ

(0)
i

(τ)

σ2
i (τ) Variance of Z(τ) given Q(τ) = i, equal to µ

(2)
i

(τ)
µ

(0)
i

(τ)
− [µ

(1)
i

(τ)
µ

(0)
i

(τ)
]2
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Two-Unit System
Unit Parameters

a1 [h−1] C1 [kWh] α1 [h−1] β1 [h−1]
0.36 20 0.5 6

a2 [h−1] C2 [kWh] α2 [h−1] β2 [h−1]
0.72 30 0.7 3

SHS-based model
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Two-Unit System
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20-Unit System

Two identical 10-unit sets

Units in each set with same parameters as those in two-unit example

Mode aggregation to form an SHS model with 121 modes
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20-Unit System
A truncated SHS model with 37 modes yields the same result
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Figure: Capacity-duration curve for p = 0.95
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1000-Unit System
Identical units with even-allocation control algorithm

State space dimension reduction:
I Aggregation to form a 1001-mode SHS model

I Truncation to form a 100-mode SHS model
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Alternative Allocation Schemes
Lemma Proof

– Neglect dissipation, i.e., ai = 0
– Assume the failure rate is the same for all units, i.e., αi = αj ,∀i, j
– Assume units are not repairable, i.e., βi = 0

then, the system capacity does not depend on the allocation mechanism

Two-unit system example with a1 = a2 = 0, α1 = α2 = 0.5, β1 = β2 = 0
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Figure: Comparision of two control algorithms
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Additional Types of DRRs
Other conventional/interruptible DRRs with no energy limits, e.g.,

I Industrial consumers stopping production

I Light dimming

Capacity of the DRR aggregation system is given by

Pr{S(τ) ≥ s} =Pr{R(τ) +D ≥ s}

=
∫ ∞
−∞

fD(v) · FR(τ)(s− v)dv = fD ◦ FR(τ)(s)

S(τ) Total power provided by the overall DRR aggregation system
R(τ) Power provided by the battery-like DRRs

FR(τ)(r) Complementary cumulative function of R(τ)

D Power provided by the conventional DRRs
fD(d) Probability density function of D
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Concluding Remarks

We proposed a framework to capture the impact of uncertainty on
the capacity of DRR aggregation systems

We presented a method to evaluate the capacity-duration characteris-
tics of DRR aggregation systems with desired confidence levels

The computational efficiency and accuracy of this method was
illustrated through case studies

We showed that the method is scalable by reducing the dimension of
the SHS state space via mode aggregation and truncation
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Stochastic Hybrid System

q = 1
ẋ = f(2, x, t)

q = 2
ẋ = f(2, x, t)

q = 3
ẋ = f(3, x, t)

λ1(x, t)

λ2(x, t)

λ3(x, t)x 7→ φ1(x, t)

x 7→ φ2(x, t)

x 7→ φ3(x, t)

A stochastic differential equation (SDE)
dx = f(q, x, t)dt+ g(q, x, t)dw

A family of m discrete reset maps
(q, x) = φl(q−, x−, t), ∀l ∈ 1, . . . ,m

A family of m transition intensities
λl(q, x, t), ∀l ∈ 1, . . . ,m
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Dynkin’s Formula

Thm. Given a function ψ : Q× Rn × [0,∞)→ R that is twice continuously
differentiable w.r.t. its second argument and once continuously
differentiable w.r.t. the third argument,

dE[ψ(q, x, t)]
dt = E[(Lψ)(q, x, t)],∀(q, x, t) ∈ Q× Rn × [0,∞)

where ψ is referred to as a test function, and the operator ψ 7→ Lψ is
called the extended generator of the system and defined as

(Lψ)(q, x, t) =∂ψ(q, x, t)
∂x

f(q, x, t) + ∂ψ(q, x, t)
∂t

+
m∑

l=1
(ψ(φl(q, x, t), t)− ψ(q, x, t))λl(q, x, t)

This gives the moment evolution equations. Go Back
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Proof.
For a given r, let Q(r) indicate the total energy provided by the DRR
aggregation system; then,

T (r) = Q(r)

r
.

If no failure has occurred, then the total energy is
∑N
i=1 Ci. Let Lj indicate the

energy loss due to the event that j-th unit in the system fails; then, we have

Q(r) =
N∑
i=1

Ci −
M∑
k=1

Lk,

where M indicates the total number of failures during the time that the DRR
aggregation system can meet the power regulation request. We show that Lj is
independent of the control algorithm used by the aggregator; therefore, the
distribution of T (r) is independent of the control algorithm.
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Proof.
Take L1 as an example; the key point is that any control mechanism
guarantees that

∑N
i=1 ui(t) = r. Let p1,i be the probability that unit i is

the first unit that fails. As all the units have the same failure rate,
p1,i = 1

N . Let T1 be the time that the first unit fails; then, we have that

L1 =
N∑
i=1

p1,i(Ci −
∫ T1

0
ui(t)dt)) = 1

N
(
N∑
i=1

Ci −
∫ T1

0

N∑
i=1

ui(t)dt)

= 1
N

(
N∑
i=1

Ci −
∫ T1

0
rdt) = 1

N

N∑
i=1

Ci −
r

N
T1,

which is independent of ui(t)’s. Then, by setting T0 = 0, expression for Lk is
given by

Lk = 1
N

N∑
i=1

Ci −
k∑
j=1

1
N + 1− j (Tk − Tk−1),

which again is independent of the control algorithm. Therefore, the distributions
of Q(r) and T (r) are independent of the control algorithm. Go Back
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