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Project objective

Research Theme
Remove barriers for the large scale integration of Demand Response (DR)
in Power Systems Operations

Main results
Large-scale population model-predictive scheduling
An economic retail mechanism to incentivize customers to sell
flexibility
Price responsive Electric Vehicle charging → coupling of grid and
transportation system
Valuation of ramping capability at the Energy Market



Recent results

Questions we approached the last quarter
What kind of Reserve Capacity is DR?
Comparison with storage
How would a for profit Aggregator behave in the market?
The need for retail competition, benefits of differentiated pricing
Pricing for ramp?
Continuous time price for electricity (...will skip for lack of time)



Vision



Understanding DR products



Aggregate DR Abstractions

Battery Model
e.g. [Lambert,’06], [Lamadrid, ’11],[Papavasiliou, ’10],[Nayar’12]...
Good for everything, easy to characterize and understand, but coarse

Dynamical System Model
Mostly HVACs, e.g. [Chong, 85],[Callaway, ’09],[Koch, ’11], [Mathieu
’12],[Chassin, ’12],[Mein,’14]..
somewhat restrictive

Dynamical System Model with stochastic input + constraints:
Deferrable Loads, EVs and HVACs [Alizadeh,’12 - ’14]
Similar representations but different classes of DR resources remain
hard to compare



DR Abstractions

Let L be the power load per unit of time h over a certain horizon:

L = [L(t0), L(t0 + h), . . . , L(t0 + (T−1)h)]

New inspiration [Taylor,’14]:
Flexible trajectories L are confined in convex polytopes L:

L = {L|AL ≤ b}

Minkowski sums of the individual polytopes:

L , L2 ⊕L2 = {L|L = L1 + L2,L1 ∈ L1,L2 ∈ L2}

are the feasible region for the population



Minkowski sums

In general complex, but tractable (approximately) in the case of
general polytopes [Taylor,’14]

Easy in case of equal parameters → our previous work directly
computed Minkowski sums, clustering loads based on their features

Idea: First divide and then conquer
Direct aggregation via clustering for single population
Minkowski sum of heterogeneous populations



Common Model

For Electric Vehicles (EVs) and Deferrable Appliances (DAs)

Definition
The service time is the minimum time the load needs to receive the
required energy. The slack time is the time difference between the time
appliance can wait and the service time.

Unified model
At each time t ∈ T the load state is its current pair (ur , us) where ur =
remaining service time and us = remaining slack time

Note: The time resolution for state/actions space is h/m, m ≥ 1 where h
is the time resolution h for load profile



Common state space model

The state (ur , us) ∈ U = {0, . . . ,Nr − 1} × {0, . . . ,Ns − 1}

Load i is plugged in (arrives) at a random discrete time ta
i and is

unplugged (departs) at discrete time td
i > ta

i which is its deadline in T

State evolution for load i The matrix u i → row u i
t = (ui

r (t), ui
s(t))

If Li is the service time (in h/m units):

u i
t<ta = 0, u i

ta = (Li , td
i − ta

i − Li)

Li for EV is the duration to charge the battery, for DA is simply the
length of the load profile vector ` = (`1, . . . , `Li)



Dimensionless State Space

With au denoting the number of arrivals in state u the state
population tensor n ∈ NNr×Ns×T dynamics are:

nu = au +
∑

u′∈U
Du′,u −

∑
u′∈U

Du,u′



Minkowski sum

The aggregate feasible set

L =
{
L |L =

∑
u∈U

∑
u′∈V(u)

R(u,u′)Ḋu,u′ ,

Du,u = 0 ∀u ∈ U , D ∈ N(Nr×Ns)2×T ,∑
u′∈U

Ḋu,u′ = nu ∀u ∈ U
}

The only difference between EVs and DAs:
→ V(u) = the set of possible moves
→ R(u,u′) = power per unit time required to change state



A notion of DR Reserve Capacity
Metrics to evaluate our state-space

The energy requirement that is scheduled to be consumed:

E = −
∑
u∈U

R(u, 0)nu .

The aggregated slack that is stored in the system:

S =
∑
u∈U

usnu .

Maximum ramp down or up for a single period given our schedule D:

L+ =
∑

(u,u′)∈W+

R
(
u,u′)nu , L− =

∑
(u,u′)∈W−

R(u,u′)nu

W+ = {(u,u′) |u′r = max(ur−1, 0), u′s = max(us +ur−u′r−1, 0)}
W− = {(u,u′) |u′s = max(us−1, 0), u′r = max(ur +us−u′s−1, 0)}

The setW denotes the most favorable moves from any point u ∈ U
with respect to either of the objectives.



Strategies

Boundaries of the DR reserve
(no new arrivals a = 0):

Policy 1: Move along the r axis
till zero, then along the s
dimension like inflexible loads.

Policy 2: Move everyone along
the s axis and delay service as
long as possible.

Middle strategy: maximizes
the minimum of L+ − L and
L− L−, leaving the most
potential for short-term
deviations up or down



Stochastic Infeed

The (negative) energy stored in the system bounded by Policy 1 and 2.
Red region (0 ≤ t ≤ 60) past and present, blue regions (t > 60, 95%, 90%
and the 50%percentiles) estimated future behavior of the bounds given
non stationary Poisson arrivals a.



Retail market deregulation: a menace?

Retailers can design their own dynamic retail pricing tariffs to shift
consumer load to times with cheaper wholesale prices



Retail markets are imperfect!

Empirically, we see retail prices do not converge to wholesale prices
and are much higher than regulated rates [Puller, 2013] [Puller, 2015]
Retailer’s goal = maximize profit + retain customers in long run

Our claim
Aside from market inefficiency, this can result in operational reliability
concerns for the grid since load can be shifted away from supply



Analysis elements

Model end-users response to prices

Model retailers’ price design problem under 2 scenarios

Benefits of differentiated pricing over dynamic retail pricing



Customer price response model

Rational price-takers for daily operations + each day is 2 epochs
Retail price = (p1, p2)
Each customer i is characterized by a triplet (di ,1, di ,2,wi) ∈ R3

+
Customer load at i = 1, 2

Li ,t = di ,t + δi ,t , t = 1, 2
where

(δi ,1, δi ,2) � 0, δi ,1 + δi ,2 = wi (∗)
Customers minimize their cost over each two epoch run:

min
δi,1,δi,2

p1Li ,1 + p2Li ,2 = p1(di ,1 + δi ,1) + p2(di ,2 + δi ,2)

s.t. (∗)
which leads to a discrete price-response model:

(δi ,1, δi ,2) =
{

(wi , 0), if p1 ≤ p2,

(0,wi), if p1 > p2,

with preference given to epoch 1 in case of a price tie.



Aggregate customer load

Customer population i ∈ N
Given a certain ask price (p1, p2), the electricity demand of the entire
customer population is:

(L1, L2) =
{

(
∑

i∈N di ,1 + wi ,
∑

i∈N di ,2) , if p1 ≤ p2,

(
∑

i∈N di ,1,
∑

i∈N di ,2 + wi) , if p1 > p2,

Analogous to that of one large customer with load parameters

D1 =
∑

i∈N di ,1

D2 =
∑

i∈N di ,2

W =
∑

i∈N wi



Retailer profit model

Wholesale market prices for the two epochs → (s1, s2)
Assumptions: access to perfect forecasts of (s1, s2) + price-taker +
all fixed costs sunk and labor costs constant
Retailer profit is:

π(p1, p2) = (p1L1 + p2L2)− (s1L1 + s2L2),

Inserting the price response of customers:

π(p1, p2) =


(p1 − s1)(D1 + W ) + (p2 − s2)D2,

if p1 ≤ p2,

(p1 − s1)D1 + (p2 − s2)(D2 + W ),
if p1 > p2,

The retailer cannot just simply solve max π(p1, p2)



Scenario #1

Customers switching decisions a function of average daily prices
rather than instantaneous prices or the bill
Representative of customers with variable daily load [Puller,2015]
Retailer designs retail prices such that their average is the same as
that of the competitors:

p1 + p2 = c



Scenario #1

Without loss of generality, assume D2 > D1.
Retailer profit is a piece-wise linear function with discontinuity at c

2 :

π(p1) =


p1(D1−D2+W )− s1(D1+W ) + (c−s2)D2︸ ︷︷ ︸

E(p1)

, if p1 ≤ c
2

p1(D1−D2−W )− s1D1 + (c−s2)(D2+W )︸ ︷︷ ︸
T (p1)

, if p1 >
c
2



Scenario #1

If W < D2 − D1 (recall D2 > D1):

max
p1

π(p1) = max
{

E (0),︸ ︷︷ ︸
load shifted to epoch 1

load shifted to epoch 2︷ ︸︸ ︷
T
(c
2 + ε

) }
,

popt
1 ∈

{
0, c2 + ε

}
, popt

2 = c − popt
1

Danger!
Suppose s2 < s1. Demand is shifted away from the cheap whole-sale
market supply iff

E (0) > T
(c
2 + ε

)
⇒ 0 <W <

(3c/2− 2s2 − ε)D2 − (2s1 − c/2− ε)D1
c/2− s2 + s1 − ε

Intuition → can make more money by overcharging for inelastic load



Scenario #2 - Aggregate revenue constraint

Customers switch to minimize average bill
If keeping all customers has the same value to the retailer, he will
keep average customer bill at competitive industry standard b

Figure: The set of feasible retail price pairs (p1, p2) shown by a black line.

p1L1 + p2L2 = |N |b, profit = |N |b - wholesale market costs.



Scenario #2 - Discussion

If the revenue cannot change the retailer has no specific incentive to
do anything sensible!

Approximation of one large customer here is too extreme

(di ,1, di ,2,wi) vary across individual customers

A shared price (p1, p2) can lead to different bills for individuals

Retailers may decide to operate in the high wholesale cost regime and
accept the (comparatively small) short-run loss in profit in return for
making its biggest revenue generating customers happy

Should we keep retail markets regulated to ensure reliability then?



The need for differentiated pricing

Differentiate loads based on flexibility → discount for more flexibility
+ direct control
see, e.g., [Kefayati an Baldick, 2011], [Bitar and Low, 2012],
[Alizadeh et al, 2013]

Challenges = more monitoring and control
Benefits = ↑ reliability + ↓ incentive to overcharge inelastic load



Monopolistic setting - flexibility discount

Rate = bundle (f , p)
= (regulated flat tariff, discount for flexibility)

How much flexible load to offer to the retailer for control?

ω∗(p) = max0≤ω≤W U(ω) = pω − I(ω).

The retailer’s profit just from serving flexible loads is:

π(p) = (s2 − s1)+ω∗(p)− pω∗(p),

Retailer solves for maxp π(p)
No short-run incentives to shift load in the opposite direction of supply
availability,
No long run incentives to favor a subset of customers over others
Challenge: in the long-run, measuring the average daily wholesale costs
without load shifting to fix flat tariff



Differentiated pricing with competitive bundles

Each retailer posts bundle (fi , pi)
The profit of each retailer:

πi(fi , pi |f−i , p−i) =
choice indicator × (flat billing revenue - wholesale costs - discounts)
= bi(fi , pi |f−i , p−i)

[
(D1 + D2 + W )fi − s1(D1 + W )− s2D2

+
(
(s2 − s1)+ − pi

)
ω∗(pi |b∗i = 1)

]
bi(fi , pi |f−i , p−i) is a binary indicator function of service selection



Differentiated pricing with competitive bundles

To decide the value of bi , the customer solves:

i∗ = argmini (D1 + D2 + W )fi − Ui(ω∗(pi |b∗i = 1)),

bi∗ is set to 1, while for all i 6= i∗, bi = 0.

The equilibrium in an ideal setting:

f ∗ = s1(D1 + W ) + s2D2
D1 + D2 + W , p∗ = (s2 − s1)+

→wholesale prices passed on to customers like ideal dynamic pricing

Important property
Market non-idealities don’t affect reliability because the billing and control
modules are separate



Conclusions

New mechanisms to add more degrees of freedom in our infrastructure
Such mechanisms will be need to:

1 make financial sense in terms of initial investment and operational
costs

2 should be backward compatible with most existing physical assets and
practices

3 not threaten system reliability
4 their reliable performance should not depend on unrealistic

assumptions such as perfect knowledge of customer behavior, social
welfare maximizing private firms, or perfect competition.

We argued that under imperfect retail competition, differentiated pricing is
preferable over regular dynamic pricing tariffs for tapping into load
flexibility while protecting reliability


