

AMFC Workshop 2016

AMFC Technical Challenges and Status: From Single Cell to Stack System

Miles Page

Elbit Systems Energy Group

Shimshon Gottesfeld

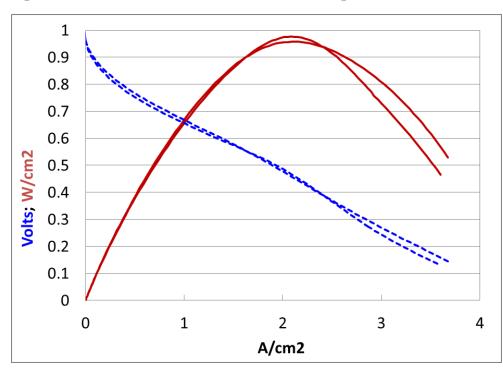
Fuel Cell Consulting Ltd.

From Single Cell to System – Key Challenges

AMFC Stack

Selected issues / research needs defined at 2011 AMFC Workshop:

- Optimize operation conditions (basically effective water management)
- Solution for carbonation issue
- Higher anode activity
- Membrane operation at T > 80°C; higher water mobility
- Advancement in state of the art 2011 → 2016
 - 200mW/cm2 MEA @0.5V →
 - 1000mW/cm2 @0.5V (Elbit; [Zhuang et al.[1] under O₂])
 - 2kW net stack system →
 - 2kW net system (Cellera 2014)
 - Presumed 10's of kW system by Daihatsu (albeit KOH-soaked MEA's)


AMFC Status – Single (well-humidified) Cell

Polarization curve – 5cm2 H₂/Air Pt-free Ca, Pt-catalyzed An;

CO₂-free air

$$T_{cell} = T_{air}(humf) = 75$$
°C
 P_{air} ; $P_{H2} = 1$;3 bar(g)

30μm thick, polyhydrocarbon membrane

- Performance level of Proton Exchange Membrane (PEM) fuel cells is within reach, however:
 - Air humidification and overall water management are critical
 - CO₂ handling adds to system complexity in operation at lower T_{cell}

Selected Issues & Research Needs

- Higher anode activity
- Membrane operation at T > 80C / water mobility
- Anode activity: significant progress has been made
 - Near-Pt activity with Pd-based catalyst [2];
 - Pt-containing bimetallics show activity greater than Pt [3];
 - Advances in fundamental understanding of alkaline HOR [4,5]
- Anode challenge today: also substantially <u>water management</u>
- Membrane:
 - Tokuyama A201 technology of ca. 2008 is still the leading commercial "standard" membrane
 - i.e. "membrane/ionomer issues" including the need for higher operation temperature and higher water mobility have not been adequately resolved!

Key System-Level Challenges

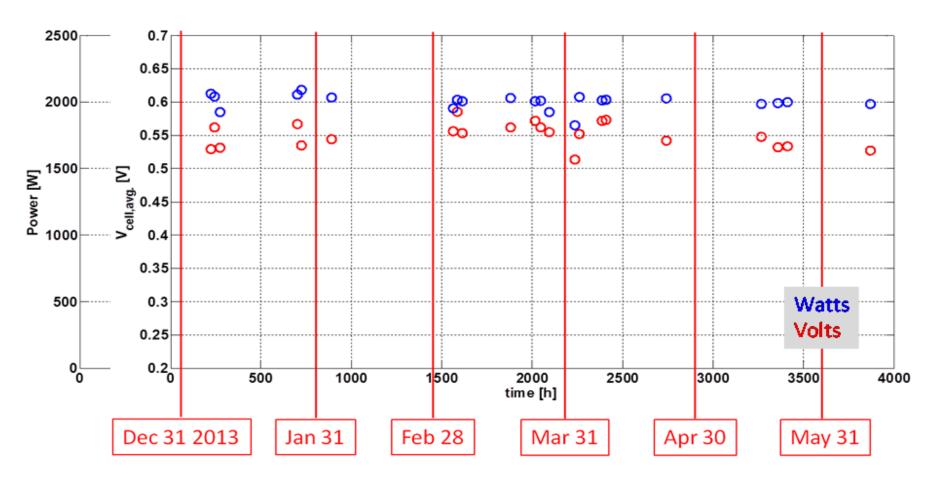
Water management

- Target: Operation with no external humidification
- Challenge: Water generation on the fuel side creates propensity for anode flooding and cathode dry-out

CO₂ immunity

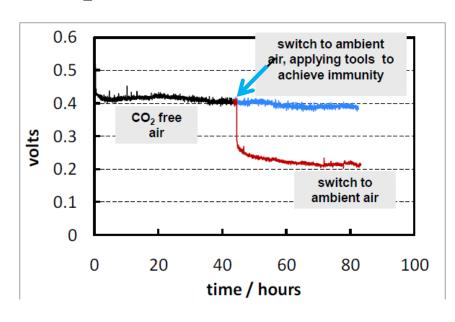
- Target: continuous operation with ambient air feed
- Challenge: direct feed of ambient air causes loss of 50% of the power vs. operation on air free of CO₂
- These challenges have been addressed significantly, nevertheless,
- Substantial room remains for further improvement

Field-tested 2kW AMFC System (Cellera)

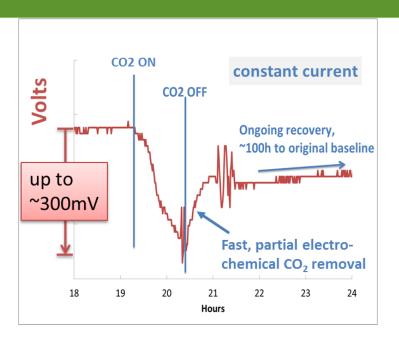

- 6-month 2kW H₂/Air stack-system test
- Live site backup capability
- Aluminum hardware; air-cooled
- Cathode water exchanger / dry anode
- Pressure ambient air / 1.5bar(g) H₂

AMFC Status – Stack operation

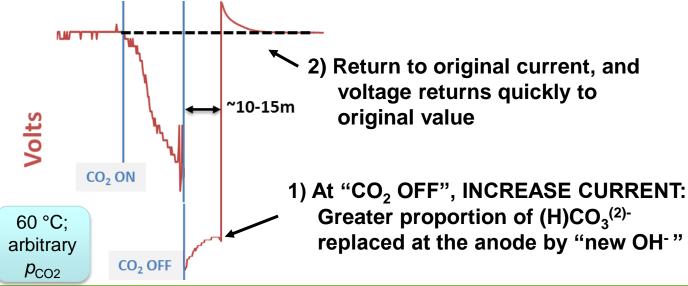
- No measurable degradation over 5000h (intermittent operation)
- Optimized shut-off/restart conditions proved critical



AMFC SYSTEM: CO₂ IMMUNITY

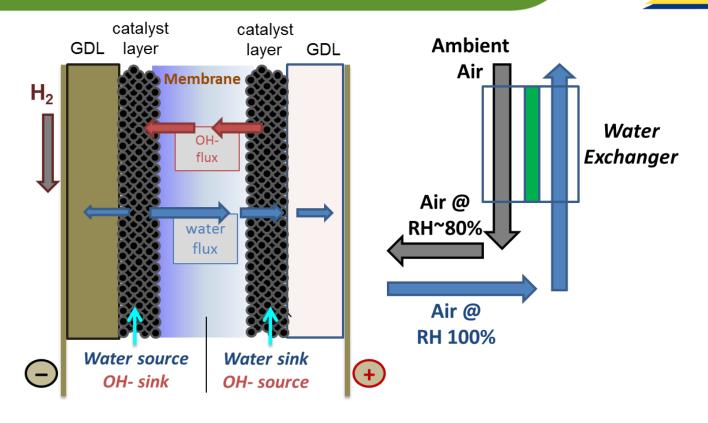

The "CO2 Immunity" Subsystem

- CO₂ sequestration subsystem upstream the cathode developed and demonstrated at Cellera (now Elbit Systems)
 [6]
 - Two step process; each lowering the CO₂ level by ~10x
 - Thereby reducing CO₂ in the cathode inlet to <5 ppm
 - First step: Thermally regenerated polymeric active material
 - Second step: completes removal of ~99% of CO₂ with a strongly CO₂-bonding inorganic solid


Handling CO2 contamination

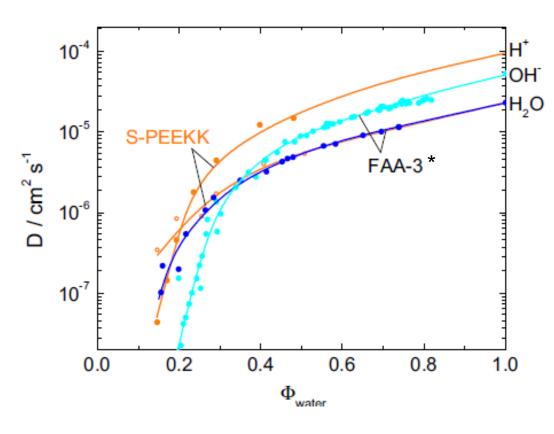
<u>Upper plot</u>: Carbonation and de-carbonation (lowering p_{CO2} under same constant current):

- ~100h to full recovery at any given current
- However: significant partial recovery in 10's of minutes
- Lower plot: Applying a current well above operation point: → effective full recovery at the operation point


The "CO2 Immunity" Subsystem

- Corrective measures demonstrated
 - CO₂ sequestration subsystem upstream the cathode
 - De-carbonation within the cell by step of high current
- CO₂ sequestration technology is advancing independent of AMFC:
 - Isotherms with >30% w/w reversible CO₂ capture [7]
 - Improvements in T swing specs (increasing adsorption T / decreasing desorption T)
- Addressing CO₂ sensitivity path forward:
 - Increase operation temperature to facilitate decarbonation and allow higher "CO₂ slip"

AMFC SYSTEM: WATER MANAGEMENT



- AMFC Hydration challenge is especially significant because
 - The cathode is actively consuming water and
 - The cathode uses high gas flow (20% O2 @ 2.0 stoichiometry) which causes substantial removal of water from the cell into subsaturated air

AMFC System: Loss of water of hydration → strong impact on performance

- Diffusivities of H⁺ and OH⁻ in the ionomer drop substantially with drop in the water content [8]
- → Strong effect of partial dehydration On conductivity for OH⁻ ion-conducting ionomers

* (FAA-3 membrane by Fumatech)

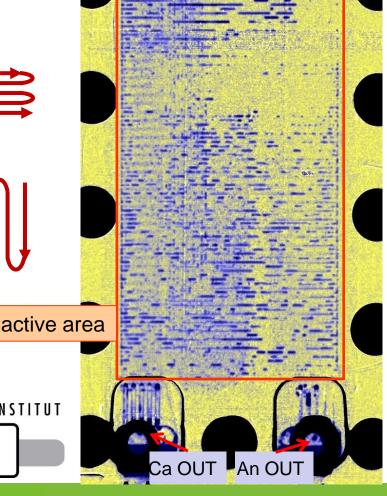
Elbit Systems™

An IN

Ca IN

240 cm2 Single-cell: Water Imaging

- Neutron Imaging "through-plane" (limited to single cell, giving a full lateral water distribution image)
- Horizontal single channels used for serpentine anode flow field
- Multi-serpentine (11 channels, 5 passes) flow field on cathode side
- Dry H₂; humidified air (80% RH);
 Cell T = 60°C

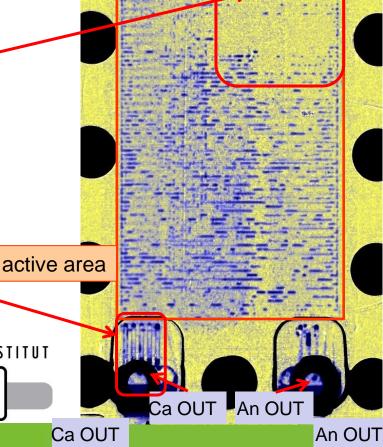

Yellow indicates "dry";

more water → more blue

Elbit Systems™

Ca IN

An IN


240 cm2 single-cell: Water Imaging

Operation with dead-ended anode and periodic gas purge (3s per 3 mins)

"Dry" section of MEA propagating from Cathode inlet

Excess water removal at Ca exhaust

PAUL SCHERRER INSTITUT

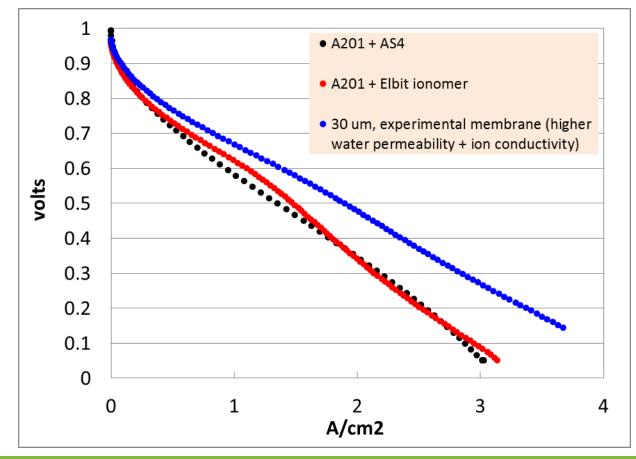
Consequences

 Water exchanger on the cathode side is a key component of the AMFC water-management subsystem, targeting highest dew point for the cathode inlet

 Fast rate of water transport across the cell membrane into the cathode is critical for high AMFC performance

RESEARCH NEEDS

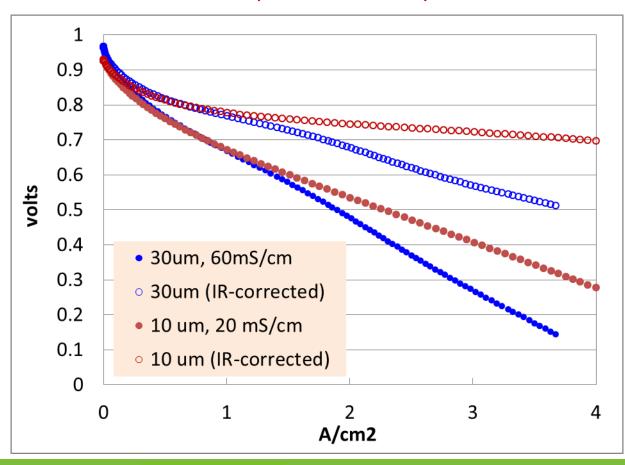
Membrane/ionomer upgrade is a key system requirement


- [increase T_{cell}] x [decrease t_{mem}] x [increase σ_{ion}]
- With the main (system) benefits being:
 - Facilitated water management
 - Reduced CO₂ filtration requirements
- Obtained by
 - $</= \sim 15 \mu m$ thick membranes of good mechanical integrity
 - Higher ionomer/membrane stability at 80 °C+

Influence of the membrane on AMFC performance

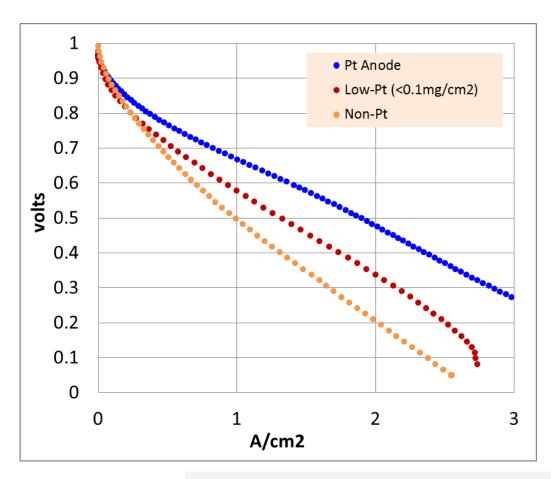
- Performance increase from optimized membrane properties (IEC/ion conductivity, water transport):
- Improved
 membrane
 characteristics
 play a significant
 role

- Single cell / 5cm2
- Full Ca humidification
- 75C



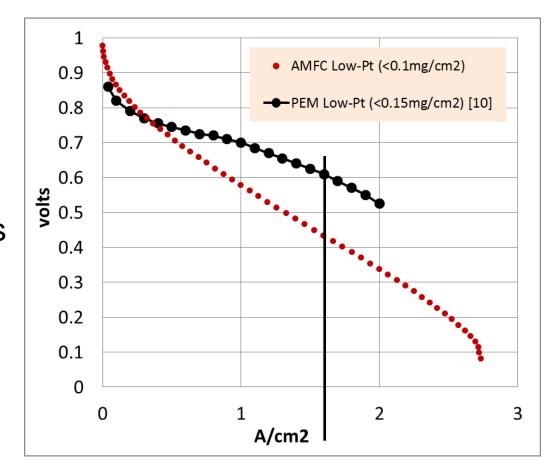
Influence of the membrane on AMFC performance

- 30 micron membrane, ~60 mS/cm (OH- at 75C)
- 10 micron membrane, ~20 mS/cm (OH- at 75C)


Thin membrane
 is potentially
 more beneficial
 than simple
 increase in
 conductance

AMFC performance recorded with different anode catalysts

- Consequences of advancing to the low-cost AMFC anode arising from low anode catalyst activity together with low catalyst utilization [9] and limited rate of H₂ access in a "flooded" anode*
 - Single cell / 5cm2
 - Full Ca humidification
 - 75C
 - 30 micron membrane



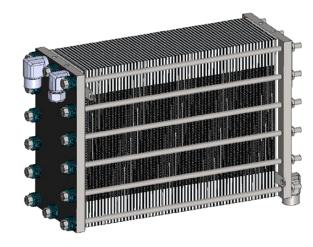
* Reminder: 2x water generation rate

Present performance of AMFC and PEMFC of low cell Pt loading

- Performance boost still needed to match low-Pt PEM cells
- Membrane improvements can certainly help, but improved intrinsic activity and novel catalyst layer structures are clearly required

Concluding Remarks

- Primary goal today from the system point of view is:
 Minimize the complexity and cost of applying system fixes to problems caused by materials properties limitations
- Reduce cathode dry-out losses through better internal water transport characteristics
- Allow higher temperature operation with advanced membranes which combine high T tolerance, water permeability and conductivity


Acknowledgements

Elbit Systems -

- Dr Yair Paska
- Yair Binyamin
- Dr Charly Azra

Cellera -

- Dr Dario Dekel
- Dr Nir Haimovitch

Dr Pierre Boillat, Paul Scherrer Institut (Neutron Imaging)

References

- 1. Wang, Y. et al., Energy Environ. Sci. **2015**, 8, p177
- 2. Bakos, I. et al., Electrochim. Acta **2015**, 176, p1074
- 3. Elbert, K. et al., ACS Catalysis 2015, 5, p6764
- 4. Strmcnik, D. et al., Nature Chem. 2013, 5, p300
- 5. Durst, J. et al., Energy Environ. Sci. **2014**, 7, p2255
- 6. Gottesfeld, S., US Patent #8,895,198 B2, **2014**
- 7. Maity, D. et al., Cryst. Growth Des. **2016**, 16, p1162
- 8. Marino, M. et al., J. Membrane Sci. 2014, 464, p61
- 9. Woodruff, M. et al., Electrochem. Comm. 2015, 61, p57
- Steinbach, A. et al., DOE Annual Merit Review 2015
 https://www.hydrogen.energy.gov/pdfs/progress15/v_c_1_steinbach_2015
 .pdf