

Approach

R&D Framework
Milestones & Deliverables
Crosscutting Process Efforts

Presented by Dan Anderson, NAABB Operations Manager

R&D Framework

- NAABB WBS is complex with 6 major task areas, multiple subtask areas and ~80 projects spread across multiple institutions
- NAABB management team translated a complex WBS into a R&D Framework to help with horizontal integration of work within tasks and to begin vertical integration of task areas
- The R&D Framework was tied to milestones, deliverables and decision points for each task area
- The R&D Framework was used to guide and manage R&D efforts across NAABB to achieve our objectives and meet key milestones and deliverables

R&D Framework with High Level Outcomes

Algal Biology Task Framework

Increase Productivity

- > Trait identification from research & production strains
 - Genomics and transcriptomics
 - Systems biology
- Genetics enabled trait screening
- Lipid & isoprenoid genes and pathways
- · Growth and energy genes and pathways
- > Phenotypic characterization in PBRs

- Molecular biology tool development for production strains
- · Genome enabled expression constructs
- · Transformation method development
- Crop protection from competitors and predators
- > Assessing traits for improved production

Research Strains

Chlamydomonas reinhardtii

Botryococcus braunii

Production Development Strains

Nannochloropsis salina (SW)

Auxenochlorella protothecoides (FW)

New or modified strains (*C. sorokiniana*)

Strains to Cultivation Task

New Strain Isolation and Development

- > Isolation of new strains
- > Screening strains for biomass and lipid productivity
- > Optimizing culture conditions for candidate strains
- > Adaptive evolution for selection of new strains
 - Flow cytometry for high lipid productivity
 - Chemostat selection for decreased nutrient requirements

Algal Biology Milestones and Deliverables

Milestones (M). Decision Deinte (CN) and (DL) Deliverables	Time (mo)
Milestones (M), Decision Points (GN) and (DL) Deliverables	
	18
A.4.ML.1: 500 algal isolates screened, ≥10 promising high lipid strains tested in culture. (report)	
A.1.DL.1: Genes for increased yield, productivity, nutrient utilization, or crop protection cataloged.	18
Transgenic tools demonstrated for <i>C. reinhardtii, B. braunii, Chlorella</i> . (report)	
A.3.DL.1: 1st generation of Nanochloropsis & Chlorella strains obtained by adaptive evolution with	18
demonstrated improvement in growth or lipid yield over parent strain. (report)	
A.4.ML.2: 1500 algal isolates screened, ≥30 best strains verified and deposited to UTEX (report)	36
	Complete
A.ML.2: Transgenic strains incorporating best trait(s) demonstrated in culture. (report)	36
	Complete

Cultivation Task Framework

Productivity, Modeling & Monitoring

- > Environmental factors for predator control
- > Climate simulation and modeling
- > Biomass growth modeling
- > Sensors for biomass, lipid and nutrient control, pathogen/predator monitoring

Waste Water Treatment & Usage

- Municipal waste water as water and nutrient resource
- > Treatment and usage of produced water
- > Pond water chemistry analysis and control

Research Tool

Cultivation Studies

Photobioreactors, Small ponds and Enclosures (UA, NMSU & PNNL)

Small Pond Test Beds (NMSU, TAMU, PNNL, UA)

Large Pond Test Bed (Pecos, TX - Cellana, HI)

Cultures &
Biomass for
Harvest/Extraction

- > ARID Raceway for thermal management
- > Enclosure systems to manage water loss
- Environmental Simulated Culture Systems for Strain Screening

Large Pond Cultivation/Biomass Production

Cultivation Scale-up

- Pecos Test Bed
- · Productivity analysis of 9 strains
- Biomass production for extraction teams
- · Harvesting pilot testing and Sensor-testing
- > Kona Test Bed
- (PBR-Raceway) production/seawater cycling,
- Biomass production for extraction teams

Cultivation Milestones and Deliverables

Milestones (M), Decision Points (GN) and Deliverables (DL)	Time (mo) Status
B.1.DL.1:Cultivation methods for greater than 5 gdw/L/day biomass at ≥50% lipid content with	18
low nutrient consumption in a small-scale closed system demonstrated (report)	Complete
B.2.DL.1: Test bed Facilities fully operational	24
Bizibziii ioot bod i dointioo idiiy oporational	
B.3.ML.1: Cultivation methods for approaching target growth rates and lipid yield with best	36
strain and low nutrient consumption in a large-scale open pond system demonstrated.	

Harvesting & Extraction Task Framework

Harvesting

- > Chemical flocculation processes
- > Electrolytic processes (field test scale-up)
- ➤ Membrane processes (field test scale-up)
- > Acoustic focusing process (field test scale-up)

Extraction/Lipid Recovery 1º Harvesting 2º Harvesting Lipid & LEA **Total Lipids** Feedstocks **Pond Harvest** TAGs Dewatering Cell Disruption/Lipid for Extraction 10x 10-20X FAA/FAME Conversion & LEA

Extraction

- > Amphiphilic solvent process
- > Acoustic process
- > Cavitation/Separation
- Mesoporous extraction FFA
- ➤ Wet Solvent Extraction (Valicor -Toll Processing)

Co-products

Harvesting/Extraction Milestones and Deliverables

Milestones (M) Decision Points (CN) and Deliverables (DL)	Time (mo)
Milestones (M), Decision Points (GN) and Deliverables (DL)	
C.DL.1: New harvesting/extraction technologies demonstrated at bench scale and scale-	15
up defined. (design specs, drawings performance reports)	Complete
C.DL.2: Economic analysis establishing most efficient technologies at liter scale	18
complete. (report)	
C.GN.1: (Go/No Go) Most viable technology(s) selected for large-scale field tests based	18
on performance and scale-up viability criteria (report)	
C.ML.1: Systems capable of 100-1000L/hr feedstock processing demonstrated. (report)	36
	Complete

Fuel Conversion Task Framework

Lipid Conversion to Fuels

- ➤ Processes to produce Biodiesel fuels (FAMEs)
 - · Solid Acid Catalyzed
 - Sub-Supercritical
- Processes to produce hydrocarbon fuels
 - Hydrogenation
 - Decarboxylation

<u>Detailed</u> Characterization

- Chemical & physical characterization of feedstock (lipid/LEA)
- Chemical & physical characterization of fuel products
- Quality/Performance evaluations of fuel products

Feedstocks

Various Lipid Extracts	Biodiesel
	Hydrocarbon Fuels
Algal Biomass • Whole Biomass • Various LEA • Macroalgae	Methane/Power
	Ethanol
	Organic Acids/Gasoline
	Bioplastics
	Refinery Feedstock

Product /Process Characterization & Evaluations

Biomass Conversions Processes

Biomass/LEA Conversion to Fuels & Chemicals

- > Hydrothermal gasification to methane for power
- Hydrothermal Liquefaction and upgrading to hydrocarbon fuels
- ➤ Biological conversion :organic acids to gasoline, ethanol
- > Production of chemicals

Fuel Conversion Milestones and Deliverables

Milestones (M), Decision Points (DP) and Deliverables (DL)	Time (mo) Status
D.DL.3: Preliminary cost analysis, bench scale rate data, and yield information obtained (report)	24 Complete
D.ML.1: Select optimal conversion process for large-scale production and wide-scale use	24
based on performance and scale-up requirements criteria (design specs, report)	Complete
D.DL.1: Pollutant and greenhouse gas emissions from the combustion of algae-derived	30
biofuels characterized. (report)	Complete
D.DL.2: ASPEN process model of conversion technologies demonstrated. (report)	30
	omplete

Agricultural Co-products Task Framework

Fertilizer Evaluations

- Small greenhouse studies
- Limited field trials

Feedstocks

Fertilizer Testing & Evaluations

Various LEA

Fertilizer Applications

Feed Applications

Ruminant
Shrimp
Fish

Feed & Fertilizer Value

Feed Testing & Evaluations

Animal Feed Development & Testing

- In vitro and in vivo nutritional value experiments
- Mariculture feed studies
- > Cattle/Sheep feed studies

Ag Co-products Milestones and Deliverables

Miles (see (M), Desiries Deis (s (ON)) and Delis and Lee (DL)	Time (mo)
Milestones (M), Decision Points (GN) and Deliverables (DL)	
E.1.ML.1: Feed Value for LEA Determined	24
	Complete
E.2.DL.1: Preliminary cost analysis, bench scale rate data, and yield information obtained	24
for production chemicals	
E.1.DL.1: Best performing feed formulations determined(report)	36
	Complete

Sustainability Task Framework

Water /CO2 Management and Chemistry

- > Separation and concentration of CO2
- > Stack gas utilization
- > Sea water utilization
- > Water chemistry analysis and models

Sustainability Milestones and Deliverables

Milestones (M), Decision Points (GN) and Deliverables (DL)	Time (mo) Status
F.1.DL.1: ASPEN process model for producing synthetic natural gas, liquid algal biofuel and chemical feedstock completed. (report)	12 Complete
F.DL.1: AISIMS data integration and standardization framework established. (report)	24 Complete
F.ML.1: Web based AISIMS modeling and database system fully implemented. (report)	36 Complete

Crosscutting Process Matrices

- NAABB recognized the R&D Framework could not address key gaps related to understanding the process requirements between various task areas
- Process Flow Matrices were developed to guide the flow of materials and data throughout the various NAABB processes from strain discovery/development through downstream extraction and conversion
- Several crosscutting process areas were identified to facilitate vertical integration within NAABB and workshops were held to use these to understand requirements and gaps
- NAABB was able to take several potential production strains through the entire process matrix developing one-of-kind data sets for modeling and scenario analysis

Production Strain GMO Development

Environmental Simulation Strain Screening

locations

diverse environments and farm

Cultivation/Harvesting/Water and Nutrient Recycling Advanced Biotrolles and Bio-products

Extraction/Lipid Clean-up and Conversion

Direction Conversion to Fuels and Co-products Alliance For Advanced Biolivels and Bio-products

NAABB R&D Approach Summary

- R&D Framework facilitated management R&D efforts across the NAABB consortium
- Milestone, deliverables and decision points were all achieved on schedule
- Crosscutting process matrices were used to facilitate the flow of materials and data across the various upstream and downstream processes
- NAABB has developed one-of-kind integrated process data from several potential production strains through multiple upstream and downstream processing scenarios

