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Goals 

• Determine economically 
feasible technologies for 
production of biomass 
followed by production of 
biomass-derived syngas 
used for: 
– Renewable power generation 
– Liquid fuel production  
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Quad Chart Overview 

• Project start date - 2010 
• Project end date - 2013 
• 80% complete 

• Barriers addressed 
– Bt-A  Biomass Fractionation 
– Gt-C High Temperature Gas 

Production from Biomass 
– Gt-G Fuel Synthesis and Upgrading 
– Gt-K Gaseous Intermediates Process 

Integration 

• Funded in FY10 
• $1.5 million 
• $281k cost share 

Timeline 

Budget 

Barriers 

• Project conducted at Auburn 
University 

• Collaboration with Rentech 

Partners 



Project Overview 

• Overall Objectives 
– Determine economic constraints associated with 

harvesting forest biomass from southern pine and 
hardwood plantations. 

– Refine techniques for biomass fractionation and 
conversion into forms suitable for trade in 
commodity markets. 

– Develop process simulation models for biomass 
gasification and gas conditioning. 

– Develop models of Fischer-Tropsch synthesis 
processes. 
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Approach 

Continuation of Previous Project 
– Models used to evaluate logistics (harvest and transport) systems 

for young plantations of southern pine and hardwood 

– Experimental methods used to identify preprocessing methods to 
convert biomass into relatively uniform products of cellulose, 
hemicellulose, and lignin. 

– Models developed and validated for biomass gasification, tar 
formation, and syngas composition using experimental data from a 
bubbling-bed fluidized-bed reactor. 

– Models developed and validated for supercritical phase Fischer-
Tropsch conversion of synthesis gases into fuels and chemicals 
using experimental FT data and gasification modeling results. 

 



 Auburn Gasification 

Platforms 

Bench-scale 
(~1 kg/hr) 

Bubbling bed 

Pilot-scale 
(1 ton/day) 

Bubbling bed Pilot-scale 
(0.5 ton/day) 

Mobile Downdraft CHP 



Gasification Research 
Objectives 

• Understand the effect of biomass properties on syngas 
quality and contaminants (e.g. tar, H2S).  

• Understand the fate of contaminants in gasification with 
different oxidizing media. 

• Determine appropriate syngas conditioning and cleanup 
strategies for subsequent FT synthesis.  

Approach: 

• Perform gasification studies on different biomass 
species (e.g. pine, eucalyptus, poplar, and switchgrass) 
and build process models to predict gasifier 
performance. 

 



 Gasification Research 
Bench-scale Gasifier Specifications 

– Pressure: atmospheric 
– Temperature: 600, 700, 800oC  
– Feed rate: ≤ 0.85 kg/h 
– Biomass particle size: ~ 850 µm 
– Moisture content: ~ 10% (wb) 
– Analysis systems: 

– NDIR based gas analyzer (online) 
• CO, CO2, CH4, H2, O2 

– HP GC (offline) 
• H2S 

– FTIR based gas analyzer (online) 
• CO, CO2, NH3, HCN, HCl 

– Impinger train for tar analysis (offline) 



 Syngas Composition 
Example Results 

Typical syngas composition profile from southern pine 
gasification with O2 as oxidant and N2 as fluidization gas 

Pine gasification at 700oC from 
using bench-scale gasifier 

ER 0.19 0.28 

Syngas Composition, vol % 
  O2 0.7 0.0 

  CO 15.8 12.1 

  CO2 8.0 8.1 
  CH4 4.2 3.0 
  H2 11.2 9.0 

  N2 60.1 67. 7 

Contaminants, ppm 

  NH3 421.5 797.6 

  HCN 40.9 63.5 

  HCl 0.9 0.9 
   H2S 31.5 25.4 



Fischer-Tropsch Synthesis 

(Gas Phase) 



 FTS Product Distribution 



FTS (Supercritical Phase) 



Benefits of Supercritical FTS 

• Suppressed CH4 and CO2 
formation 

• Increased olefin selectivity 
at higher carbon numbers 

• Improved activity 
maintenance 

• Decreased Adiabatic 
Temperature Rise 

• Higher activity and 
enhanced diesel and wax 
selectivity 
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FTS Research 
Objectives 
• Synthesize and characterize Fe-based Fischer-Tropsch 

Synthesis (FTS) catalysts suitable for use with biomass-
derived syngas  

• Compare gas-phase, slurry-phase, and supercritical phase 
FTS with syngas obtained from biomass gasification 

• Quantify the effect of syngas composition and contaminant 
levels on FTS performance 
– Characterize this performance relative to syngas conversion, 

product selectivity, and yield of fuel-range hydrocarbons 



•100 Fe : 10 Zn : 1 Cu : 2 K (by mol) catalyst, T = 240oC, P = 17.5 bar, H2 / CO = 1.65 

FTS Liquid Product 
Functionality -v- Carbon Number 

CO Conversion = 45%
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•100 Fe : 10 Zn : 1 Cu : 2 K (by mol) catalyst  

•T = 240oC, P = 79 bar, H2 / CO = 1.65, media = hexanes, media rate = 1 mL/min per 50 SCCM 

CO Conversion = 45%
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Modeling Research 
Objectives 
• Optimize gasification-FTS system design using process 

integration techniques for thermal management and resource 
conservation. 

Approach 
• Models developed using commercial process simulation 

software. 

• Models augmented with customized units for specific 
equipment, (not be readily available in commercial simulators).  

• Models developed in collaboration with other researchers to 
enable synergistic feedback of design changes identified by 
simulation to guide targeted validation experiments. 



  Model Formulation 

• Simulation Input 

– Proximate and ultimate analysis used as simulation input 

– Aspen Plus® process simulation software 

– Gibbs Free Energy minimization approach 
 

• Initial Analyses 

– Analyze impacts of increased oxygen (air) content  

– Determining optimal air-to-fuel ratio for each feedstock 

– Examine effects of varying gasifier pressure 

– Steam injection to augment synthesis gas production 



  Gas Phase FTS Model 



  Model Specification 
• Fischer-Tropsch Reactor 

– Based on ARGE reactor (Ruhrchemie and Lurgi) 

– 2050 tubes, 5 cm ID and 12 m length (48.3 m3) 

– Recycle of tail gas (ca. 1/3) 

– Production requires 70.5 gmole CO/sec 

– CO consumption 1.46 gmole CO/m3-sec 

– Heat of Rxn = 170,000 J/gmole CO 

– Volumetric heat generation= 248 kW/m3 

– Packed bed thermal conductivity= 4.49 W/m-K 

– ΔTmax=SeR2/4k, ΔTmax= 8.6K (average) 
 



 Supercritical Phase FTS Model 



FTS System Comparison 



  Process Integration 

• Heat Exchanger Network Design 

– Based on conventional pinch analysis methods 

– Performed using AspenTech HX-NetTM 

– Multiple network configurations generated 

– Default setup attempts minimizing total annualized cost 
based on utility use and equipment size 
 



FTS System Comparisons 

• Gas Phase FTSa 

– 900˚C adiabatic temperature rise 

– 180 reactor modules 
 

• Supercritical Phase FTSa,b 

– 30˚C adiabatic temperature rise 

– 6 reactor modules 

 
a 50% Conversion with a 5˚C allowable temperature rise 
b Hexane media with 3.5 mol media per mol syngas  



FTS System Comparison 
 

 ARGE SCAR 

Number of Reactors in Series 1 6 
   

Number of Tubes 2050 1 
   

Tube Diameter (m) 0.05 2.3 
   

Tube Length (m) 12 2 
 

 

 

 SCAR 

Number of Heat Exchangers in Series 6 
  

Number of Tubes 128 
  

Tube Diameter (m) 0.062 
  

Tube Length (m) 9.74 
 



FTS System Comparison 

 
ARGE 

ARGE 
Modified 

for SCF-FTS 

SCAR  
(Single 

Reactor) 

SCAR  
(Multi-

Reactor) 

Number of Reactors 1 1 1 6 
     

Pressure (bar) 45 200 200 200 
     

Reactor Volume (m3) 48 48 48 8 
     

Adiabatic Temperature Rise (K) N/A N/A 5 30 
     

Surface Area per Reactor (m2) 3864 3864 85.4 14.2 
     

Reactor Cost $2,700,000 $5,500,000 $240,000 $40,000 
     

Number of Heat Exchangers N/A N/A 1 6 
     

Surface area per HX (m2) N/A N/A 825 241 
     

Cost per HX N/A N/A $1,160,000 $340,000 
     

Equipment Cost $2,700,000 $5,500,000 $1,400,000 $2,300,000 
     

Equipment Cost ($/BPD) $3,000 $6,000 $1,600 $2,500 
 



Technical and economic feasibility of biomass-to-
liquid systems will be improved through: 
• Enhanced understanding of the relation between 

biomass physicochemical properties and syngas quality 
(Tt-C). 

• Enhanced understanding of the relation between 
biomass gasification conditions and feedstock properties 
on syngas quality (Tt-F). 

• Enhanced fuel selectivity and productivity using SCFTS 
(Tt-G). 

• Expanded understanding of the performance of FT 
catalysts using biomass derived syngas (Tt-H). 
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Relevance 
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Critical Success Factors 

• Developing information and models that will accurately predict 
syngas composition from biomass characteristics and gasifier 
operating parameters. 

• Refining models that predict the overall technical and economic 
feasibility of gasification and SC FTS systems. 

• Using models to successfully demonstrate the cost effectiveness of 
SC FTS and its potential ability to match the scale of biorefineries 
with biomass logistics systems. 
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Future Work 

• Continue biomass gasification studies with broader 
range of feedstocks.  

• Test FT catalysts with biomass syngas produced 
from southern pine. 

• Update feedstock definition to match materials used 
in gasification studies and validate models using 
experimental gasification data. 

• Combine gasification models with FTS models to 
evaluate optimal integration and recycle scenarios.  
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Summary 

• Gasification testing using bubbling bed gasification systems was 
used to expand our understanding of gasification of southern pine. 

• Model development is underway to predict gasification performance 
based on biomass composition and operating parameters. 

• Supercritical phase Fischer-Tropsch synthesis has been tested 
extensively at bench scales. 
1) Suppressed CH4 and CO2 formation 

2) Increased olefin selectivity at higher carbon numbers 

3) Improved activity maintenance 

4) Decreased Adiabatic Temperature Rise 

5) Higher activity and enhanced diesel and wax selectivity 

• Process modeling shows that production of liquid fuels and chemicals 
through supercritical FTS can be more cost effective than traditional 
gas-phase FTS. 
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Additional Slides 
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