Novel Approach for Biomass Synthesis Gas Cleaning for Liquid Fuel Applications

WBS 3.2.5.9

May 22, 2013
Thermo-chemical Platform Review
Presented by: Ben Phillips, Emery Energy
Lyman Frost, Ceramatec

Project Overview

Timeline

- Start Date 9/30/2008
- Completion Date Dec 2012
- Construction 100% complete
- Project 100% complete

Budget

Total Project Funding \$1,734,459 DOE \$1,853,350 Contractor Funding received in FY11 \$293,161 Funding for FY12 \$137,102.84

Barriers Addressed

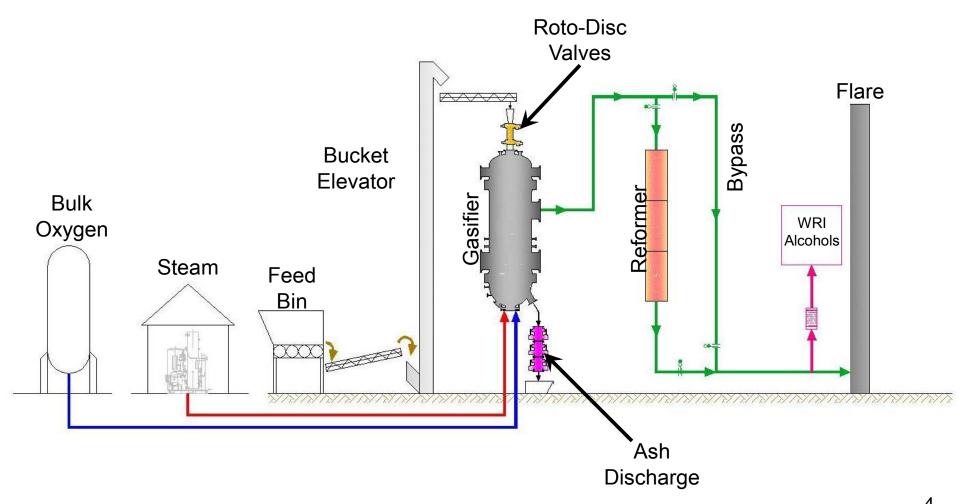
- Tt-C Gasification of Wood, Biorefinery Residue Streams and Low Sugar Biomass
- 2. Tt-F Syngas Cleanup & Conditioning
- 3. Tt-H Validation of Syngas Quality

Partners

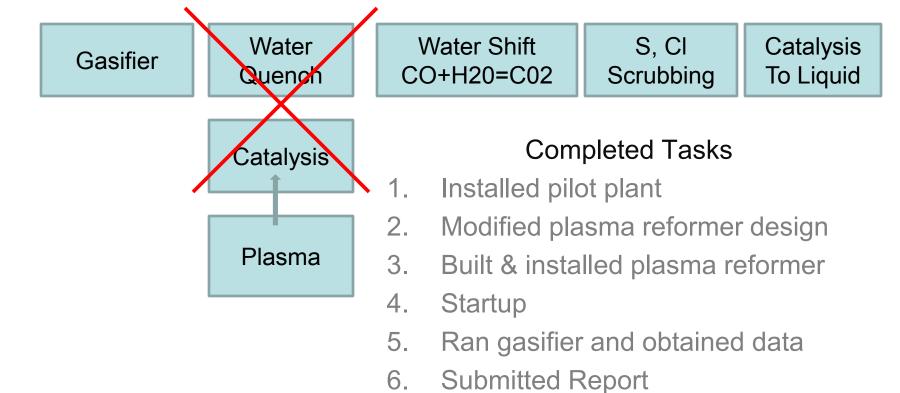
- Western Research Institute
- Ceramatec
- Idaho National Laboratory (sampling via FWP)

Goals and Objectives

- 1. Demonstrate the ability of a cold plasma reformer to destroy tars and oils in syngas produced by biomass gasification.
 - Obtain operating data that documents destruction and provides a heat and mass balance. Use these to determine cost benefits relative to alternative processes.
 - Optimize the operation of the cold plasma reformer


Success will eliminate the need for catalyst reforming/ tar removal by water quench

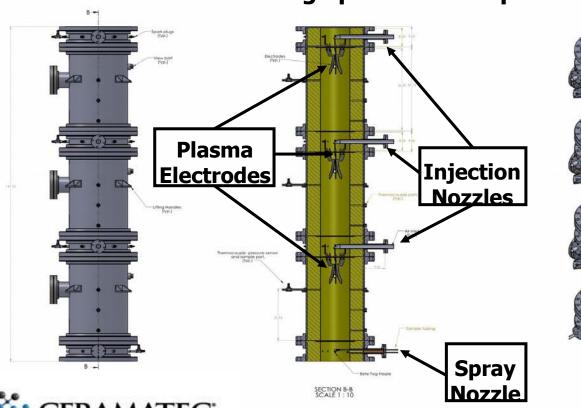
- 2. Use Syngas cleaned by the cold plasma reformer for liquid fuel production
 - Obtain operating data in an existing liquid fuel synthesis pilot plant
 - Identify commercial opportunities
 - Continue reformer data analysis to identify possible process improvements.


1 - Approach

Flowsheet

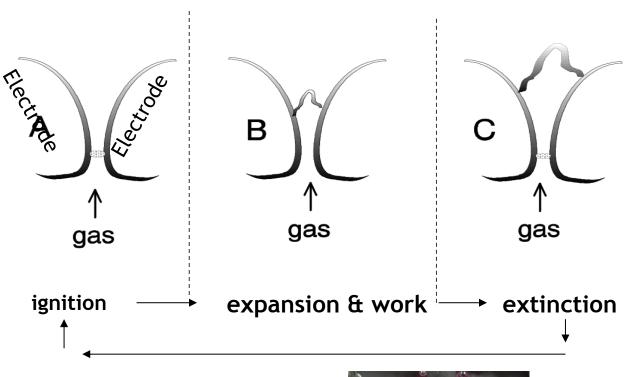
2 - Technical Accomplishments/Results

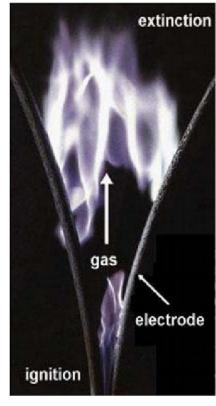
Completed Installation



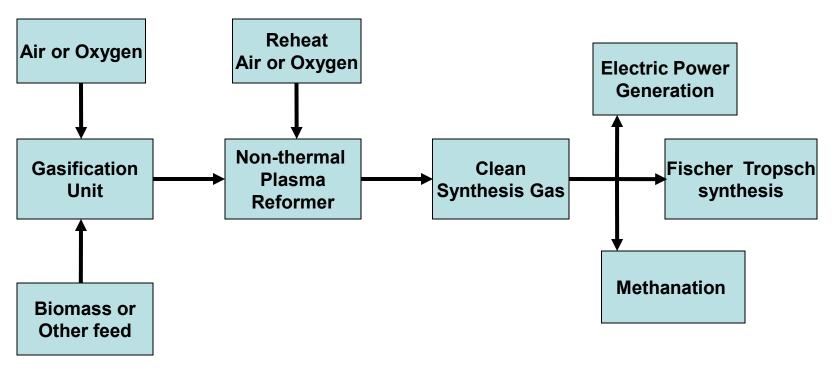
In-situ plasma reformer assembly

3-Stage plasma with quench stage





2 - Technical Accomplishments (cont'd) Cold Plasma GlidArc Operation



Directly reform tars & oils

Laboratory scale plasma reformer

Simulated gasifier stream

- Bottled synthesis gas
- > Toluene injection
- Steam, O₂ ,or air to obtain temperature
- GC analysis of toluene destruction and CGE

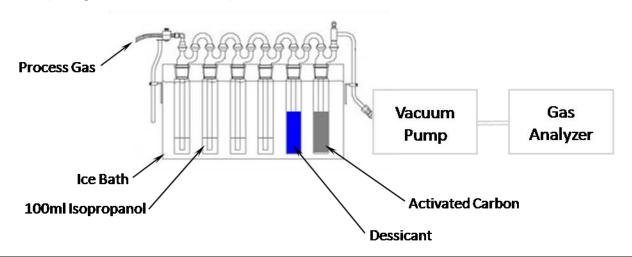
Best combination

	Dry Gas	Air In	O ₂ In	H ₂ O In	Toluene In
Run	L/min	L/min	L/min	g/min	g/min
4	50	52	0	1.7	5.9

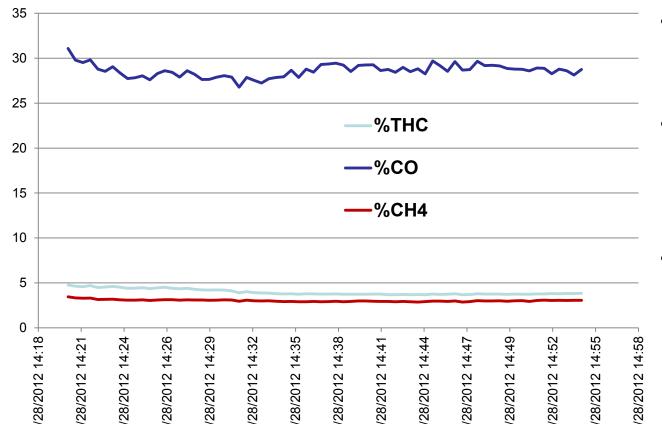
			Mole %	Output			
Run	H_2	N ₂	СО	CO ₂	Toluene	CH ₄	H ₂ 0
4	12	54	21	7	0	.3	6

	LHV Gas In	LHV Gas Out	Thermal Eff	Toluene
Run	kW	kW	Percent	% Destroyed
4	5.02	5.87	117	100

Run 4 had good destruction and good efficiency



- Conversion of BTX and other hydrocarbons very good in laboratory
 - 92% methane (near equilibrium limit)
 - 96% ethane
 - 100% (to detection limit) of other C2-C4
 - 98% benzene
 - 99% toluene
 - 100% (to detection limit) of xylenes



- INL on-site testing of Emery Gasifier Reformer
 - Sample pre- and post-reformer
 - Collect impinger train samples and CEMS
 - Survey relative concentrations before and after reformer
- Test Equipment
 - Continuous Emissions Monitoring (CO, CH4, THC)
 - IPA impinger train samples for semi-volatiles

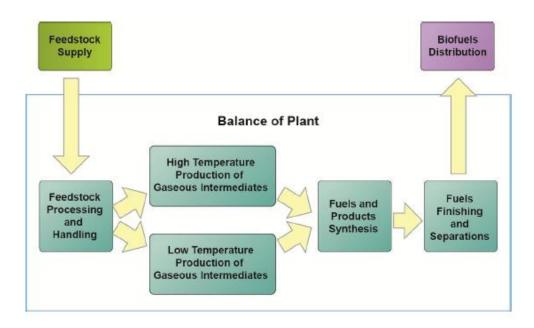
Pre-Reformer Measurement

- Gasifier generally operating at steady state
- THC represents sum of CH₄ and other hydrocarbons converted to CH₄
- Noncondensible
 THC gases range
 from 0.5-1.5%
 above CH₄ when
 converted to CH₄equivalent

Gas bag samples (foil bags) collected – results support
 CEMS results

Corrected Samples:	H2	СО	CO ₂	Methane	Ethane	Ethene
Mean Pre-reformer	30.03	31.35	29.19	3.44	0.15	0.49
Corrected Post Reformer	28.80	35.57	26.24	3.69	0.13	0.65

Liquid Impinger Samples


- Polynuclear aromatic compounds are generally reduced
- Styrene (intermediate product of naphthalene decomposition) appears to increase as naphthalene decreases

Compound:	Pre-Reformer	Post Reformer	
Acetic Acid	34697	53924	
Toluene	69729	48902	
Styrene	9455	15910	
Phenol	24289	23763	
Benzene, 1-propynyl	53432	39708	
Napthalene	130962	76698	

3 - Relevance

 The expected output of the project will enable the largescale production of cleaner syn-gas that is more compatible with down-stream processes for the production of energy or liquid fuels.

From MYPP 2012

3 - Relevance (cont'd)

Program Mission:

- "Transform our renewable biomass resources into commercially viable, high-performance biofuels... through targeted research, development, demonstration, and deployment supported through public and private partnerships.
- Enable sustainable, nationwide production of advanced biofuels
- This project focuses on demonstration and deployment of a full-scale biomass conversion platform for production of a high quality gaseous intermediate.
- This addresses specific areas of the MYPP 2012:
 - Gt. C. High-Temperature Gas Production from Biomass
 - Gt. F. Gas Cleanup and Conditioning
 - Gt. H. Validation of Syngas Quality

4 - Critical Success Factors

- Critical success factors include the ability of this process to economically and efficiently eliminate unwanted heavier hydrocarbons from the syngas stream.
- Potential challenges:
 - Biomass feed specifications can affect overall quality of syngas
 - Process parameters must be explored to optimize production and process efficiency.
- This project is continuing to demonstrate viability in the production of biofuels, and continuing work will further demonstrate the importance of this technology for biofuels and bioenergy production.

5 - Future Work

No Future Work is Planned

Summary

- Plasma Reformer:
 - Meets objectives of BETO per MYPP 2012
 - Technology demonstrated on full-size system
 - Work continues with other partners

(Not a template slide – for information purposes only)

- The following slides are to be included in your submission for Peer Evaluation purposes, but will not be part of your oral presentation
- You may refer to them during the Q&A period if they are helpful to you in explaining certain points

Project Delays

 Project was delayed twice due to weather and the need to make additional gasifier modifications.

	PLANNED - LAST PEER	TASK ACTUALLY
TASK	REVIEW	INITIATED
Commissioning	May 2011	December 2011
Initial Runs	June 2011	August 2012
Reformer Runs	September 2011	November 2012

Contact Information

Benjamin Phillips
159 Pierpont Avenue
Salt Lake City, UT 84101
801.364.8283
bphillips@emeryenergy.com

