2013 DOE Bioenergy Technologies Office (BETO) Project Peer Review

Development of Bio-Oil Commodity Fuel as a Refinery Feedstock from High Impact Algae Biomass

May 23rd, 2013 Bio-Oil Technology Area Review

> James R. Kastner BioChemical Engineering The University of Georgia

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Goal/Objective Statement

- Convert wet algae to liquid hydrocarbons
- Generate a refinery grade, low N bio-oil feedstock from algae
- Co-process algal oil with an intermediate refinery stream

Project Quad Chart Overview

Timeline

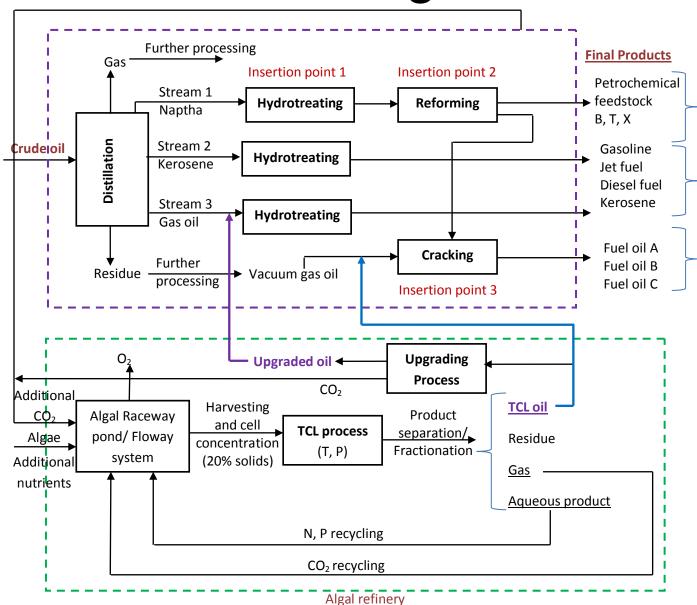
Project start date: 1-1-2013

Project end date: 2-1-2014

Percent complete: 25%

Budget

- Total project funding (\$698,000)
- Funding for FY 2013 (\$698,000)
- 5 months, Annual Funding Rate?

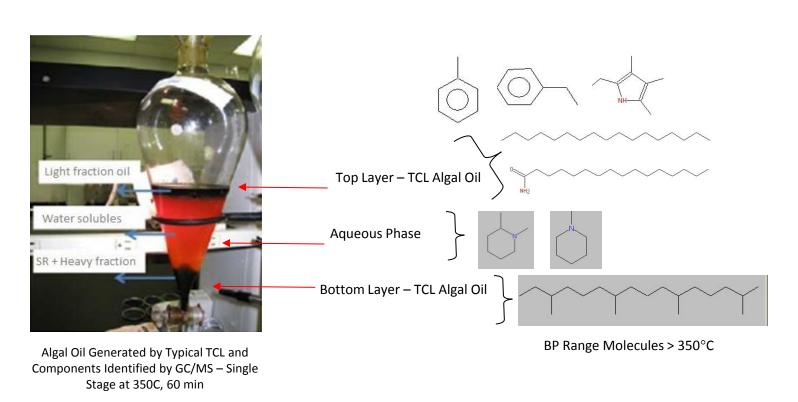

Barriers

- Barriers addressed
 - Al-B. Algal Fuel Production
 - High Nitrogen Oil

Partners & Roles

- Intertek Microcrude Assay
- DRI Short τ, TCL
- Refinery TBD

Flow Diagram



Key Unit Operations

- Open Algal Raceways Economical
- Filtration Increase Solids (algae biomass) to 20%
- Low Temperature Thermochemical Liquefaction
 - Cell Disruption
 - Soluble protein removal, partial protein hydrolysis
 - Recycle and reuse N in aqueous phase for algae cultivation (not a focus of this project)
- High Temperature Liquefaction (TCL)-Generate Algal Oil
 - Catalytic HTL
- Catalytic Hydrodeoxygenation of Algal Oil
- Co-Processing Upgraded Algal Oil and Refinery Intermediate

Technical Barriers

- High Levels of Nitrogenated Compounds in Algal Oil
 - 4-10% N in algal oil, increased H₂ demand in HDO/HDN, catalyst poisons

Approach

- Grow mixed algal consortia in algal floway systems (Fig. 1)
 - Chlorella sorokiniana, Chlorella minutissima, and Scenedesmus bijuga)
- Use commercially available Spirulina for liquefaction screening studies until micro-reactors available

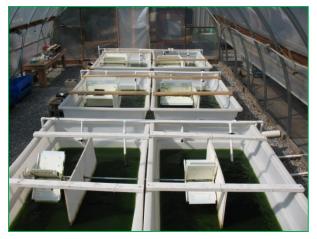
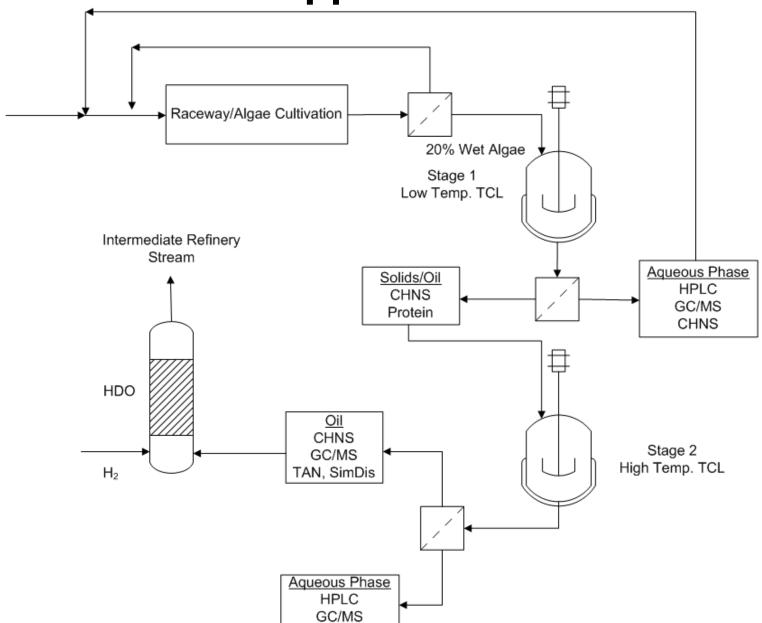



Fig. 1: Algae cultivation in 20L carboys (A) and six raceways (500L each) under green house facility (B).

Approach

- Harvest, Continuous Centrifuge, Dry, Grind, Store 4°C
- Low Temperature Thermochemical Liquefaction
 - T=175-250°C, τ =5-30 min, 50-450ml Parr batch reactors
 - Separate soluble proteins/partial protein hydrolysis
- High Temperature Thermochemical Liquefaction
 - T=350°C, τ =5-60 min, 50-450ml Parr batch reactors
 - Study catalyst effect, kinetic analysis
- Catalytic Hydrodeoxygenation/Denitrogenation
 - Study catalyst effect Pd/Ru on carbon, 450ml Parr batch reactors
 - Measure H₂ consumption, kinetic analysis
 - Co-process with refinery intermediate
 - Measure fuel properties

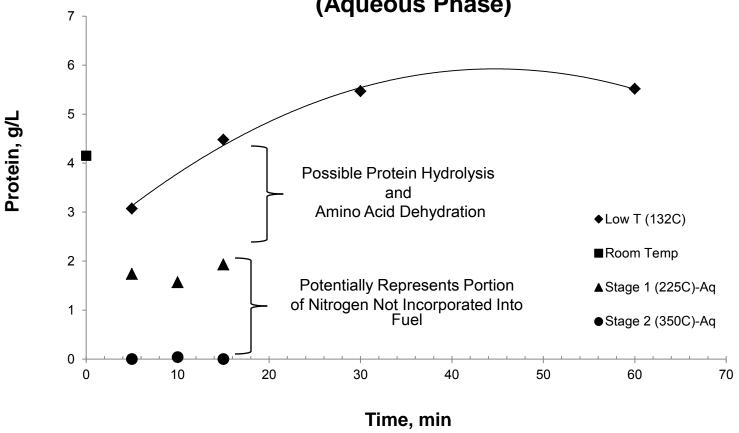
Approach

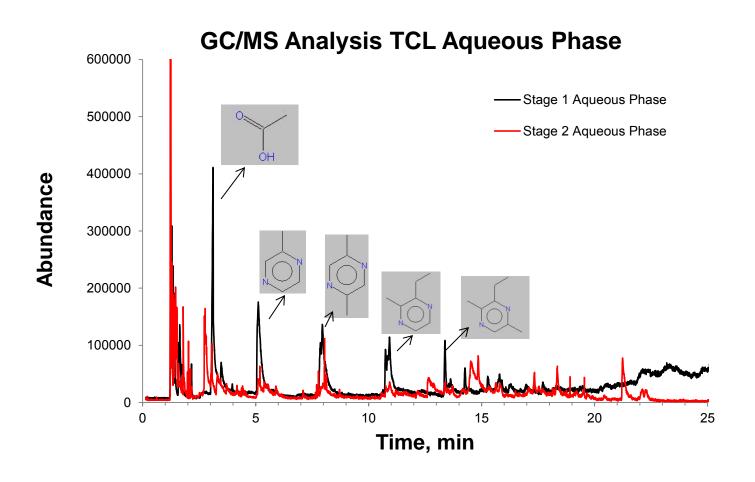
Progress

- Total of 1800 g (dry weight) of algae biomass generated in raceway
- Algae biomass has been processed and will be characterized (protein, carbohydrates, lipids)
- Satisfies biomass need for subsequent catalytic liquefaction studies using small volume batch reactors

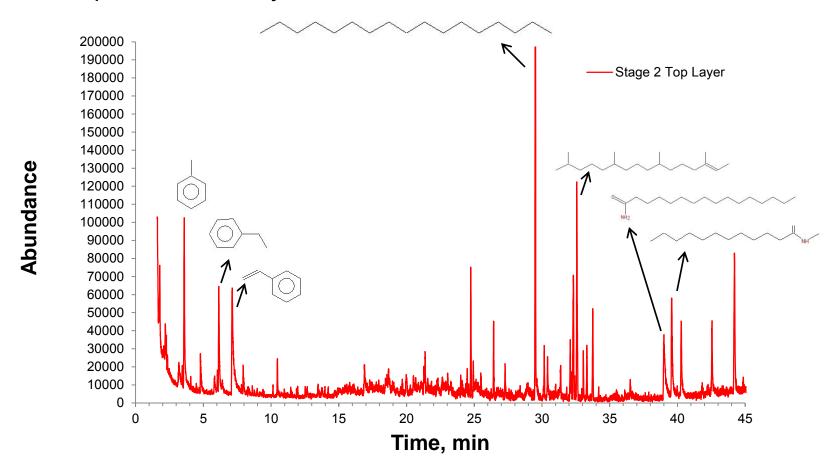
Progress

- Initiated 2-Stage Liquefaction Studies Using Spirulina
 - Stage 1: T=175-250°C, τ=5-30min
 - Stage 2: T=350°C, τ=60min
 - Spirulina 44% Protein, ~12% Lipids, X% Carbohydrates
 - 20% solids, 450 ml working volume, Parr Batch Reactor




LCA Progress

- A spread sheet based techno-economic assessment of algae cultivation system was established (one acre raceway)
- Cost of producing 15-20% solid algae slurries for liquefaction developed
- On-going tasks:
 - Development of process simulation model from algae through liquefaction to oil intermediates
 - Plant layout and discounted cash flow analysis
 - Estimation of capital cost and operating cost


Pretreament Effects on *Spirulina* Protein Removal (Aqueous Phase)

Pyrazines observed in stage 1 (S1) aqueous phase (not observed in S2)

- Primary oil GC/MS analysis S1(225°C,10 min) S2 (350°C, 60 min)
- Similar profile for heavy oil

2-Stage TCL Conditions (T, °C; τ, min)				%N in Oil	Yield (HO+PO) (g oil/g algae feed)	H/C	O/C
T ₁	τ_{1}	T ₂	τ ₂				
0	0	350	60	$\textbf{4.1} \pm \textbf{1.04}$	1.0	TBD	TBD
225	5	350	60	$\textbf{1.7} \pm \textbf{0.5}$	0.95	TBD	TBD
225	15	350	60	$\textbf{1.9} \pm \textbf{0.7}$	0.66	TBD	TBD

HO – heavy oil or bottom layer

PO – primary oil or top layer

TBD – To be determined, on-going analysis

Relevance

- Strategic goal is to convert Algae into fungible liquid fuel
 - Utilized at one or more insertion points within a petroleum refinery
- TCL eliminates need for drying wet algae and lipid extraction using solvents
- Significant reduction in algal oil nitrogen required
 - Crude Oil: 0.1-1.5 %N
 - Heavy Vacuum Oil: 0.4-1.6 %N
 - Target for Algal Oil < 1.0% N

Critical Success Factors

- Generate Low N, O, Acid, and Viscosity Algal Oil
- Potential challenges
 - Low yield
 - Convert protein to platform chemicals and fuels
 - Catalyst deactivation
 - External H₂ needed (Can we use NH₃ as an internal H₂ donor?)
 - Lack of comprehensive characterization data on algal bio-oil
- Secure Refinery Partner
- Demonstrate Algal Oil Co-Processing with Refinery Intermediate

Future Work

- 2-Stage TCL analysis of raceway consortium
- SimDist analysis of algal oils (BP ranges)
- Catalyst effect on second stage TCL
- Catalytic HDO/HDN of low N, TCL algal oil
- Microcrude assay of algal oils
- Initiate refinery talks
- Co-process upgraded algal oil
- Process simulation and LCA analysis

Timeline

Tasks	May-13	Jun-13	Jul-13	Aug-13	Sep-13	Oct-13	Nov-13	Dec-13	Jan-14
Two-stage TCL Studies	•	•	•						
Algal Oil Analysis									
Low N Algal Oil			•						
HDO/HDN			•	•	•	•	•	•	
Large Vol Upgraded Oil								•	•
Methods for HDO/HDN									•
Intermediate Oil- Refinery			•	•	•				
Co-Processing							•		
Microcrude Assay								•	
Process Model	•	•	•	•	•	•	•	•	
LCA Analysis	•	•	•	•	•	•	•	•	
Technoeconomic Analysis								•	•

Summary

- Relevance: Algae into fungible liquid fuel via one or more insertion points within a petroleum refinery
- Approach: Generate low N algal oil via 2-Stage TCL
- Technical accomplishments: Protein removal reduces %N in algal by 40-50% (preliminary data)

Summary

- Future work:
 - 2-Stage TCL analysis of raceway consortium
 - Catalytic HDO/HDN of low N, TCL algal oil
 - Co-process upgraded algal oil
- Success factors and challenges
 - Target for Algal Oil < 1.0% N
 - Achieve high yields and low N algal oil
- Technology transfer
 - Secure Refinery Partner
 - Demonstrate co-processing of upgraded algal oil

Additional Slides

Raceway

Pond Volume

Height of the Pond

Carbonation system

Paddle wheel speed

Pond area

Productivity

Retention time

Harvest flow

Algae Raceway

First Harvest Second Harvest

			THE HEALT	
		_		

1 acre

 $0.15 \, \mathrm{m}$

4 days

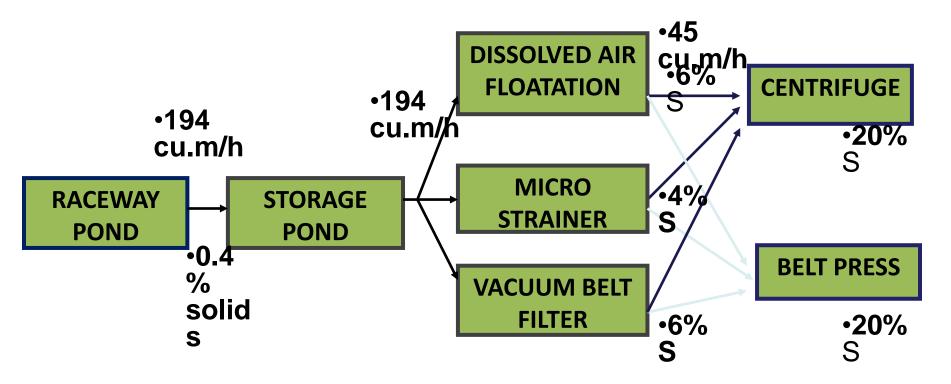
25 g/sq.m/day

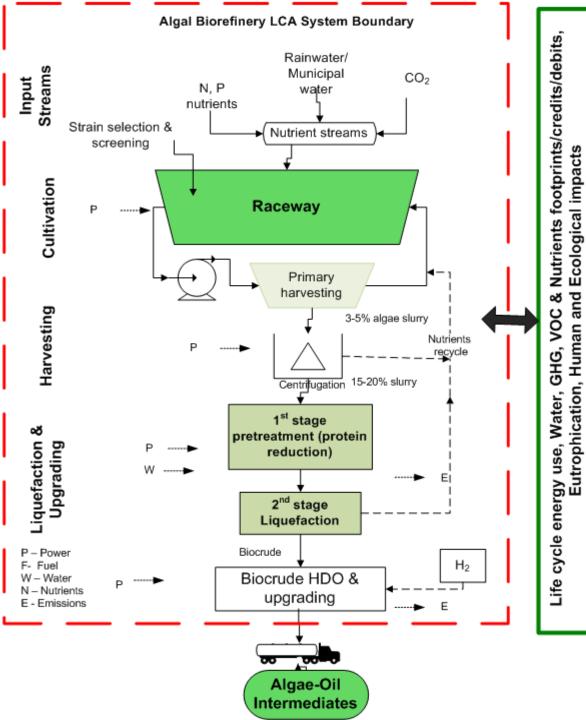
m or 12 ft deep)

30 cm/sec

25% pond volume

1 carbonation pit for 1 ha (3.6)


565 cu. m



HarvestingSystem

- Raceway pond Operation : Steady-state continuous mode, 25% vol
- ·Daily Harvest Flow: 4658 cu. m @ 194 cu.m/h
- •Each harvest unit operates 24 X 7 for 300 days/year.

Life Cycle Assessment

- Established system boundary
- Functional unit per gallon of intermediates or crude oil equivalent
- On-going tasks:
- (1) Mass and energy balance estimations
- (2) Measurement of emissions from liquefaction & HDO studies
- (3) Impact assessments
- (4) Scenarios development