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Goal Statement

The goals of this project are to develop metabolic engineering
approaches for diatoms to enable induction of lipid accumulation by
controllable manipulation of intracellular processes rather than from

external environmental conditions, and to manipulate carbon

partitioning within the cell between lipid and carbohydrate synthesis
to enable both abundant biomass and lipid accumulation.

Open Pond Sensitivities

Lipid content (50 : 25 ¢ 12.5%)

Growth rate (50 : 25 : 12.5 g/m2/day)
Operating factor (365 : 330 : 250 days/yr)
Nutrient recycle {100% : base - 0%)

Water supply (undergound : utility purchase)
Ineculum system (not required : requined)
Mutrient demand (ref [5] : base : ref [49])
Flocculant required (15 : 40 : 80 mg/L)
€02 cost basis (50 : 540 : 580/tonne)

€02 delivery (pure CO2 : flue gas)

‘Water recycle (100% : 95% : B0%)
Evaporation rate (0.15 ; 0.3 : 0.6 cm/day)
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Achievement of the goals will result in increased overall lipid

productivity and the development of diatoms as biofuels production

organisms, which will facilitate the production of algal-based

biofuels nationwide.



Quad Chart Overview

Timeline

Project start date 09/01/09
(actual 02/01/10)

Project end date: 08/31/13
(one year NCE)

Percent complete: 90%

Budget
Total project funding: $300,000

- DOE share: $224,686
- Contractor share: $75,314

Funding received in FY12:
$100,000

Funding for FY13: $0

Barriers

Understanding fundamental
processes of carbon flux and
partitioning in diatoms.
Developing a versatile set of
genetic manipulation tools.
Developing the ability to
manipulate carbon partitioning
for abundant lipid
accumulation coupled with
high biomass accumulation.

Partners

J. Craig Venter Institute (Dr.
Andrew Allen)

UCLA (Dr. Matteo Pellegrini)
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Project Overview

Diatoms were identified as excellent candidate biofuel production
microalgae in the Aquatic Species Program (ASP).

Like most other algae, accumulation of triacylglycerol (TAG)
requires cessation of growth to shift carbon flux from carbohydrate
production to TAG accumulation.

The fundamental aspects of carbon flux and partitioning and their
regulation are unknown.

By investigating mRNA-level changes during TAG accumulation
under different limitation conditions and with different diatom
species, carbon flux and its regulation can be elucidated.

Further development of genetic manipulation tools, coupled with
identification of key carbon partitioning regulatory genes, could
enable metabolic engineering to facilitate high lipid productivity.



1 - Approach

Objective 1: To perform comparative transcriptomic analysis in
Thalassiosira pseudonana and Cyclotella cryptica of TAG
accumulation resulting from silicon and nitrogen limitation, to identify
common and key regulatory steps involved in controlling TAG
accumulation and carbon partitioning.

Objective 2: To metabolically engineer the cell to alter carbon
partitioning to either improve the rate of TAG accumulation or to
enable TAG accumulation along with high biomass accumulation.

Metrics

Obj. 1: Develop a map of carbon flux pathways and
identify key regulatory genes.

Obj. 2: Improve genetic manipulation tools to enable
metabolic engineering using key regulatory genes.

Combined Obj.: Demonstrate improved TAG accumulation
characteristics in engineered strains. 5
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Comparative analysis of diatom genomes reveals substantial differences in the
organization of carbon partitioning pathways

Sarah R. Smith, Raffaela M. Abbriano, Mark Hildebrand *

Marine Biology Research Division, Scripps Institution of Oceanography, UCSD, La Jolla, CA, United States

A comparative analysis of the genes involved in carbon
partitioning metabolism from three available diatom genome
sequences, from Thalassiosira pseudonana, Phaeodactylum
tricornutum, and Fragilariopsis cylindrus

Centric Pennates

Thalassiosira Phaeodactylum Fragilariopsis
pseudonana tricornutum cylindrus



Comparison of the Predicted Intracellular Location of Core Carbon Flux
Isozymes Indicate Substantial Differences in Pathways
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Key Findings:
1.  The fundamental process of glycolysis is not conserved in different algal species.

2. Intercompartmental transport of metabolites will be an important regulatory process.

3. Diatoms are actively sampling carbon flux genes from different evolutionary sources.



Substantial Differences in Metabolic Organization
and Processes Comparing Evolutionarily-diverse Algae

Available online at www.sciencedirect.com Current Opinion in
SciVerse ScienceDirect Chemical Biology

Metabolic and cellular organization in evolutionarily diverse
microalgae as related to biofuels production

Mark Hildebrand', Raffaela M Abbriano’, Juergen EW Polle®,
Jesse C Traller', Emily M Trentacoste?,

Sarah R Smith' and Aubrey K Davis’

COCHBI-1045; NO. OF PAGES 9

Key Findings:

1.

Fundamental photosynthetic and metabolic processes substantially differ in different algal classes,
particularly comparing primary with secondary endosymbionts. Limited data indicates that the
efficiency of processes differ in different classes of microalgae.

Nature has “experimented” with different arrangements of carbon fixation and carbohydrate storage
throughout evolutionary history. We hypothesize that this maximized overall carbon processing
efficiency under prevalent environmental conditions.

Generalizations of metabolic or photosynthetic capabilities of “algae” should not be made.

We propose that comparative analysis of sub-steps in carbon flux across evolutionarily-divergent
microalgae will provide invaluable insight into the relative efficiency of processes, leading to the
development of optimized arrangements in organisms and synthetic systems.
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Fundamental Analysis of Short-term Lipid Accumulation
Resulting from Silicon Limitation in T. pseudonana

Reproducibility of Lipid Accumulation
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Whole-Genome mRNA Expression Using Microarrays
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Transient Responses and Coordinate Transcriptional
Regulation are Prevalent

Transient Response
Disproportionately represented at 4hr
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Key Findings:

1. 45% of the transcriptome was significantly up- or down-regulated during the process.

2. Transient responses were predominant at 4 hours.

3. Global alteration in transcript levels was common, suggesting “master” regulators.

4. Transcript level changes correlated with metabolic changes, indicating that the former is an accurate

proxy for monitoring changes in cellular metabolic processes. Sarah Smith



Changes in Gene Expression and Physiology Can Be Correlated
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Key Findings:
1.  Gene expression data correlates with physiological changes.



Elucidation of Carbon Flux Processes:
Transient Induction of Gluconeogensis Genes

> Storage Carbohydrate Genes
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Key Finding:

1.

The initial response to Si starvation is
induction of gluconeogenesis and
carbohydrate storage, followed later by TAG

accumulation.
Sarah Smith



Expression Patterns Can Be Used to Identify Key Proteins

Stage 1 Stage 2 .
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Triosephosphate translocators (TPTs) are responsible for carbon efflux from the chloroplast.
There are 8 TPT homologs in T. pseudonana.
Substrate specificity cannot be determined by sequence comparisons.

Which are involved in export of carbon from the chloroplast? The two most highly upregulated at
4hr?



Intracellular Localization of Two Diatom Triosephosphate Translocators
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Overexpression of TPTs in Transgenic T. pseudonana Affects Growth
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Key Findings:

1. Transcript data can be used to identify key
== Wt proteins involved in carbon flux.
= A

2. Excellent candidates for translocators that
i B

export carbon from the chloroplast have been

=== Both

identified.

3. Manipulations of the translocators result in a
phenotypic effect on growth.

Aubrey Davis



1 - Approach

Objective 1: To perform comparative transcriptomic analysis in
Thalassiosira pseudonana and Cyclotella cryptica of TAG
accumulation resulting from silicon and nitrogen limitation, to identify
common and key regulatory steps involved in controlling TAG
accumulation and carbon partitioning.

Objective 2: To metabolically engineer the cell to alter carbon
partitioning to either improve the rate of TAG accumulation or to
enable TAG accumulation along with high biomass accumulation.

Metrics

Obj. 1: Develop a map of carbon flux pathways and
identify key regulatory genes.

Obj. 2: Improve genetic manipulation tools to enable
metabolic engineering using key regulatory genes.

Combined Obj.: Demonstrate improved TAG accumulation
characteristics in engineered strains. 19



C. cryptica: A Model Lipid Accumulating Species
(collaboration with Pellegrini and Merchant labs, UCLA)

The top diatom species from the
Aquatic Species Program, candidate
production strain (grown outdoors).

Genome
* Assembly finished (150
Mbp), finalizing gene models

Nitrogel Sta_ vation:: _|%
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Development of Diatom Genetic Manipulation Tools:
Overexpression and Knockdowns

Promoters available:
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Roshan Shrestha, Aubrey Davis, Luciano Frigeri



Development of Diatom Genetic Manipulation Tools:
Fluorescent Tagging and New Selectable Markers

Tagged Destination vector

for one-step tagged cloning

Intracellular Localization with
Different Fluorescent Proteins

e =% | Available TAGs : CFP, eGFP, mWasabi,
o teminatr warp bflo1, , RFP, andTagRFP

Localization to the cytoplasm, chloroplast, chloroplast membrane, periplastid membrane, ER, plasma
membrane, pyrenoid, mitochondria, cell wall, and possibly peroxisome have been demonstrated.

Previous to this project only one selectable marker (nourseothricin resistance) was available for T.
pseudonana. We have developed two additional markers, for zeocin resistance (generated by codon
optimization), and glyphosate resistance (interaction with the Weeks lab at UNL).

Key Advances:

1.

A versatile set of genetic manipulation tools has been developed, bringing the technology for diatoms
on a par with other model organisms.

We are defining intracellular membrane systems in detail for the first time in a secondary

endosymbiont, which enables understanding of cellular compartmentation as related to carbon and
other fluxes.

The technology has changed our fundamental approach from observation to direct testing of

hypotheses via manipulation. Aubrey Davis, Roshan Shrestha
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Objective 1: To perform comparative transcriptomic analysis in
Thalassiosira pseudonana and Cyclotella cryptica of TAG
accumulation resulting from silicon and nitrogen limitation, to identify
common and key regulatory steps involved in controlling TAG
accumulation and carbon partitioning.

Objective 2: To metabolically engineer the cell to alter carbon
partitioning to either improve the rate of TAG accumulation or to
enable TAG accumulation along with high biomass accumulation.
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Obj. 2: Improve genetic manipulation tools to enable
metabolic engineering using key regulatory genes.
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Rationale for Carbon Flux Manipulation
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Previous data (Aquatic Species Program) indicate that the partitioning of carbon flux is a
primary determinant of lipid accumulation.

Hypothesis: Reducing the flux to competing pathways should improve lipid accumulation.



Diatom Carbohydrate Storage
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Diatoms store carbohydrates as a soluble (3-1,3-linked
glucan called chrysolaminarin outside of the chloroplast in
the chrysolaminarin vacuole.



Knockdown of a Chrysolaminarin Synthase Gene
Improves TAG Accumulation

Chrysolaminarin Synthesis Transcript Changes
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The best knockdowns resulted in 1.5-3 fold
improvement in TAG levels over wild-type.

We are characterizing knockdowns in the two other
genes and generating simultaneous knockdowns in
multiple genes.

Key Finding:

Inhibition of carbon flux to a competing pathway
(carbohydrate storage) improves TAG
accumulation, in some cases without detriment to
growth.

Kalpana Manandhar-Shrestha



Overexpression of a DGAT Improves TAG Accumulation
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Increased TAG accumulation results from overexpression
of a TAG synthesis enzyme. Kalpana Manandhar-Shrestha



Characterization of CGI-58 Lipase Homologs

Emily Trentacoste, Jennifer Hull, Bill Gerwick
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CGI-58 knockdowns in Arabidopsis and mutations in humans resulted in high TAG accumulation



Characterization of CGI-58 Lipase Homolog Knockdowns

“1” = antisense
“3” = RNAI
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TAG was increased 1.9 - 4 fold



Key Finding: A Variety of Manipulations Lead to Increased TAG

Redirecting Increasing Inhibiting lipid
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Characterization of CGI-58 Lipase Homologs:
Improved Lipid Content Plus a Non GMO Selection Approach

Emily Trentacoste, Jennifer Hull, Bill Gerwick
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Knockdowns exhibited a phenotype of increased TAG plus increased cell viability under Si-
limitation conditions.

Increased viability plus increased fluorescence (BODIPY and Chlorophyll) are selectable
phenotypes.

Emily Trentacoste



Native Sequence, Non-GMO Selection Approach

= <
promoter natl antisense terminator / promoter antisense terminator \
fragment fragment
Wild-type Knockdown 1
promoter antisense terminator
fragment
BODIPY Brightfield Chlorophyll BODIPY Brightfield Chlorophyll Transform and SeIect

Organisms are classified as GMOs only if DNA from another genus is introduced. Theoretically,
through recombination and cross-over such an arrangement could be generated by the native
host.

Transformants generated this way will not be classified as GMOs, can be selected, and may have
improved viability under stress than wild-type.

Additional genes can be manipulated by co-transformation.

Key Finding: Application of genetic manipulation approaches has led to the possibility
of native sequence-based metabolic engineering for field applications with no regulatory
issues.



3 - Relevance

 The mission of the Biomass Program (the Program) is to:
Develop and transform our renewable biomass resources into cost-
competitive, high-performance biofuels, bioproducts, and biopower
through targeted research, development, demonstration, and
deployment supported through public and private partnerships.

« This project (Award DE-EE0001222) relates to Conversion R&D
to develop technologies for converting feedstocks into cost-

competitive liquid transportation fuels.
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4 - Critical Success Factors

Critical success factor

Successful deployment of metabolically-engineered strains in
production systems with maintenance of productivity.

Challenges:
1. Adapt the technology to production strains (being done, C. cryptica
has been deployed in outdoor systems).

2. Continue research to identify manipulations that provide the highest
lipid yield with no negative impact on growth and biomass accumulation.

Demonstrate that success of the project will advance the state
of technology and positively impact the commercial viability of

biomass and /or biofuels

Technoeconomic analyses indicate that improvement of lipid content is the single
most important factor in reducing the cost of the biological component of biofuels
production. (Davis et al. 2011. Appl. Energy 88:3524-3531).
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5. Future Work

Project end date will come prior to a complete investigation of
gene targets for improved performance. Additional funding is
needed!

We plan to continue manipulating genes in different aspects of
carbon metabolism to provide an overview of critical metabolic
processes required for high lipid accumulation coupled with a
detailed look at specific aspects within a given metabolic
process.

Upcoming milestone — demonstrate that multiple manipulations
result in “trait stacking” for improved performance.

Decisions forward will be made based on the data obtained,
manipulations that show the most improvement will be
pursued in more detail.
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Summary

Three major goals of the project were to:
1. Understand fundamental processes of carbon flux and partitioning in diatoms.
2. Develop a versatile set of genetic manipulation tools.

3. Develop the ability to manipulate carbon partitioning for abundant lipid
accumulation coupled with high biomass accumulation.

All three goals were achieved, but more can be done.

In addition, novel insights were gained into:
Evolution-based differences in fundamental metabolic processes in microalgae.
The contribution of compartmentation to intracellular carbon flux and processing.

The relation between transcriptomic data and changes in cellular metabolic
processes.

The intracellular membrane organization of a secondary endosymbiont.
The importance of lipid catabolism on overall cellular lipid status.

ok b=

A major technical advance is the development of an approach to use native sequences
to metabolically engineer the cell, avoiding a GMO classification.

Targets identified at the 2011 Program Review were to demonstrate that metabolic
engineering could improve TAG accumulation. The goal was achieved by this review.
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Responses to Previous Reviewers’
Comments

The major reviewer's comment to be addressed in the 2011 review was the
concept of how valid the approaches would be in a production scenario.
Concerns were related to: 1) whether the technology would work, 2) the
relatedness of lab-based improvements to production conditions, and 3)
whether GMO organisms could be deployed.

The response to the comments at that time were that 1) the fundamental
work needed to be done in order to assess it's feasibility, 2) unless
improvements were generated in the lab, there would be no possibility for
assessment in production systems, and 3) the decision to deploy GMOs
was beyond the scope of the project, however based on precedence in crop
plants, the prospect was considered positive.

As a result of the work completed since the 2011 review, we have
demonstrated that the approaches work and have generated an
approach that could avoid GMO classification. Testing of lab-
improved strains outdoors is outside the scope of the current
project, but is desired. 40
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2 - Technical Accomplishments/Progress/Results

Project Management Plan Breakdown

Transcriptomic and bioinformatic analysis of environmentally-triggered lipid
A. accumulation.

Bioinformatic identification of genes involved in lipid accumulation and carbon
A.1 partitioning.

Analysis of Affymetrix microarray probing of T. pseudonana during short-term
A.1.1. lipid accumulation resulting from silicon limitation.

Confirmation done by lllumina-based RNAseq
A1.11

Transcriptomes and genome done by lllumina-based RNAseq
A2A1.
A211.
A212 Confirmation done by lllumina-based RNAseq

Metabolic engineering of the cell to alter carbon partitioning for abundant lipid
B. accumulation coupled with high biomass accumulation
B.1 Manipulation of selected genes
B.1.1 Manipulation of selected genes from genome sequences
B.1.2 Manipulation of selected genes from transcriptomics analyses
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