

Proudly Operated by Battelle Since 1965

Phosphorus, Sulfur, and Chlorine in Fuel Gases: Impact on High Temperature Fuel Cell Performance and Clean-Up Options

57% net electrical efficiency on methane

8 SOFC cells per furnace with independent gas flow

Multi-cell MCFC test stand

OLGA A MARINA

Pacific Northwest National Laboratory
Workshop on Gas Clean-Up for Fuel Cell Applications
March 6-7, 2014

High Temperature Fuel Cell R&D at PNNL; Impurities Overview

Proudly Operated by Battelle Since 1965

- Cell/stack/system design, fabrication, and testing
- Identification and mitigation of performance degradation mechanisms in cells and stacks
- Development and application of modeling and simulation tools for improved cell/stack/system design
- Partnered with industrial developers to accelerate commercialization of fuel cell systems

Gen 4
403 cm² Active Area

Continuum
Electrochemistry
modeling

SOFC Component Lamination

Selected Impurities in Biogas/Landfill Gas:

Impurity	Volatility Class	
*AsH ₃	II	
*HCl	III	
*H ₂ S	II	
*Hg	II	
K	I	
Na	1	
*PH ₃	II	
*Sb *Se	II	
*Se	II	

- Class I: least volatile and will remain in the ash
- Class II: more volatile and will partition between solid and gaseous species
- Class III: highly volatile and show little tendency to condense from the vapor phase

Pigeaud, Maru, Wilemski, Helbe, Trace Element Emissions, DOE, 1995, pp 7-13.

* SOFC and/or MCFC assessments conducted at PNNL (*Marina, Pederson et al, ECS Transactions 26 (2010) 363-370*)

Phosphorus in Fuel Gas: Very Low Threshold for Reaction with Ni; Excellent Cleanup Options

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

 EBSD/SEM micrographs of electrolytesupported SOFC cells following exposure to synthesis gas containing phosphorus

Red: Ni; Green: YSZ; Blue: Ni₃P

 First nickel phosphide forms at exceptionally low P(g) fugacities. Alkali carbonates can capture P to below the thermodynamic threshold for Ni₃P(s)

- Phosphorus captured at inlet of fuel cell stack;
- Similar behavior for arsenic and antimony in fuel gas

Anode Poisoning by HCI(g) Low and Reversible for Both SOFC and MCFC; Clean-Up to <1ppm by Solid Sorbents

Proudly Operated by Battelle Since 1965

- Chlorides as high as 1 wt% in biomass
- Concentrations to 500 ppm in syngas reported

- SOFC anode poisoning consistent with reversible surface adsorption
- Ni chloride solid phases not expected
- NiCl_x(g) activities negligibly low
- ► Chlorides will displace carbonates in MCFCs
- ► Electrolyte loss by chloride volatilization is the principal degradation mechanism

Ni Anodes for Both SOFC and MCFC Reversibly Poisoned by H₂S(g) in Fuel Gases; Modified Anodes Provide Higher Sulfur Tolerance

Proudly Operated by Battelle Since 1965

Modest decrease in fuel cell performance due to <10 ppm H₂S(g) exposure.

410

Time (Hours)

110

210

310

510

710

610

High fuel utilization, high anodic polarization can dramatically lower the concentration of S or Se needed to form solid reaction products at the anode/electrolyte interface

5

Research Needs, High Temperature Fuel Cells

- More thorough understanding of mechanisms of degradation resulting from interactions with impurities in biogas, landfill gas, shale gas, and other fuels
- Long-term testing of cells and stacks under realistic conditions of current density and fuel utilization
 - Expected impurity concentrations following cleanup
 - Expected impurity concentrations with cleanup system upset
 - Testing with emerging cleanup options
- ► Thermochemical modeling of impurity interactions significant gaps in data exist relevant to fuel cell systems.

Phosphorus, Chlorine and Sulfur in Biomass

Proudly Operated by Battelle Since 1965

	Phosphorus, wt %	Chlorine, wt %	Sulfur, wt %
Concentrations in biomass	0.14 (loblolly pine) 0.29 (ND weeds) 2-4 (grass ash) 11.5 (willow ash)	0.5 (corn straw) 0.1 (woody) 0.42-0.96 (eucalyptus on saline sites)	0.13 (corn straw) 0.03 (woody) 0.42 (dairy) 0.52 (feedlot) 1.45 (sewage)
Interactions with SOFC	Forms Ni _x P _y solid phases even below 1 ppb	<100 ppm – minor reversible losses Solid phases unlikely	<0.1 ppm – no effect 1-10 ppm –minor reversible losses >1000 ppm – solid phases formed
Interactions with MCFC	No direct study, but expect formation of Ni _x P _y solid phases even below 1 ppb	Loss of electrolyte through alkali chloride volatilization	<0.1 ppm – no effect 1-10 ppm –minor reversible losses Dissolution in molten carbonate electrolyte

Lack of complete agreement in literature regarding tolerance for both MCFCs and SOFCs to Cl and S

March 13, 2014