U.S. Department of Energy Fuel Cell Technologies Office

U.S. DEPARTMENT OF ENERGY

Energy Efficiency & Renewable Energy

Overview of Fuel Cell Activities with a focus on AEMFC R&D

Phoenix, AZ April 1, 2016

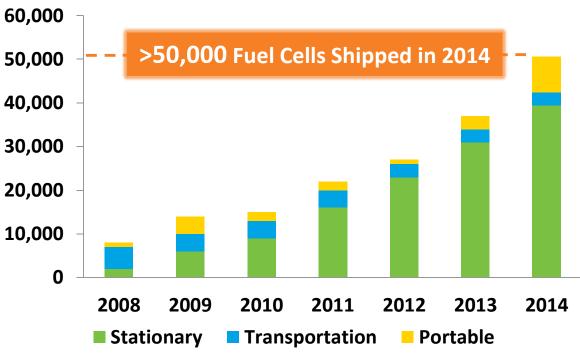
Dimitrios Papageorgopoulos

Program Manager, Fuel Cells Fuel Cell Technologies Office U.S. Department of Energy "Let that be the common purpose here in Paris. A world that is worthy of our children. A world that is marked not by conflict, but **by cooperation**; and not by human suffering, but by human progress. A world that's safer, and more prosperous, and more secure, and more free than the one that we inherited. **Let's get to work**."

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 2

Reduce GHG emissions by 17% by 2020, 26-28% by 2025 and 83% by 2050 from 2005 baseline climate Action Plan

By 2035, generate 80% of electricity from a diverse set of clean energy resources Blueprint Secure Energy Future


Double energy productivity by 2030 Department of Energy

Reduce net oil imports by half by 2020 from a 2008 baseline Blueprint Secure

Reduce CO₂ emissions by **3 billion metric tons** cumulatively by 2030 through efficiency standards set between 2009 and 2016

Fuel Cells Going Strong

Fuel Cell Systems Shipped Worldwide by Application

Source: Navigant Research (2008-2013) & E4tech (2014)

Global Market

Potential in

10-20 years*

۲

- Consistent ~30% annual growth since 2010
 - \$14B \$31B/yr for stationary power \$11B /yr for portable power \$18B – \$97B/yr for transportation

* *Fuel Cell Economic Development Plan*, Connecticut Center for Advanced Technology, Inc. January 2008

Fuel Cell Electric Vehicles (FCEVs) are here

Honda Clarity Fuel Cell Vehicle

DOE Hydrogen and Fuel Cells Program

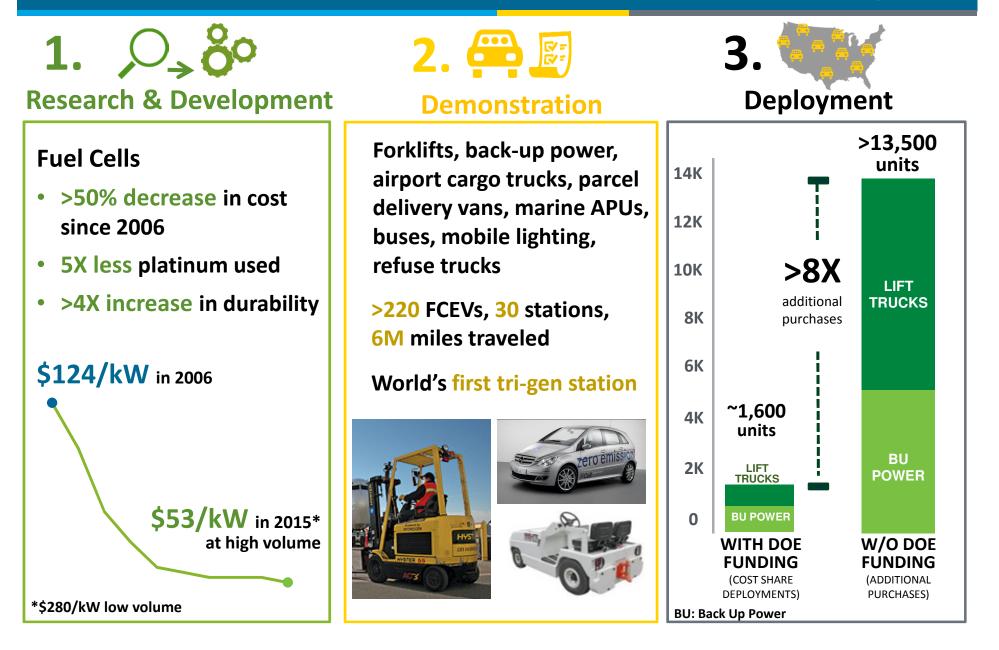
Mission

To enable the *widespread commercialization of hydrogen and fuel cell technologies*, which will reduce petroleum use, greenhouse gas (GHG) emissions, and criteria air pollutants, and will contribute to a more diverse energy supply and more efficient use of energy.

Basic & Applied Research Fechnology Validation and Technology Development Systems Integration & Analysis ket Transformatio Hydrogen Durability Fuel R&D **Fuel Cell** Production R&D Delivery Storage (On-Board) **Manufacturing R&D** Marl H₂ Cost at Pump **Safety Codes & Standards** Education

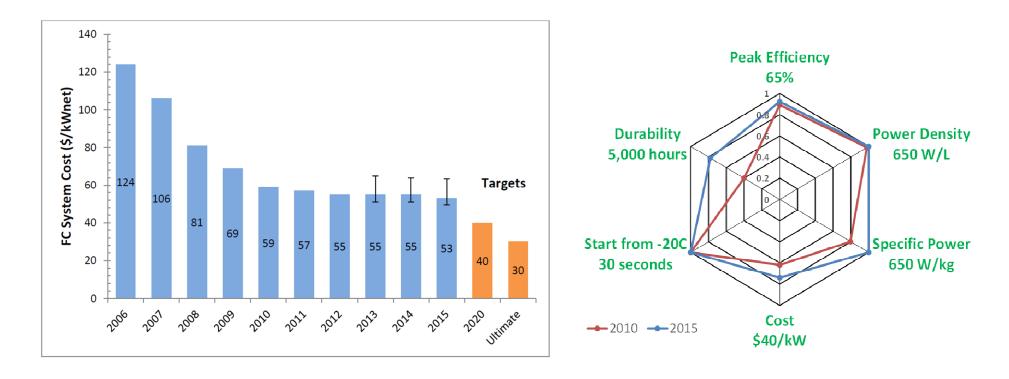
Image: constraint of the state of the sta

2020 Targets by Application


*For Natural Gas **For Biogas

<\$7/gge (early market)

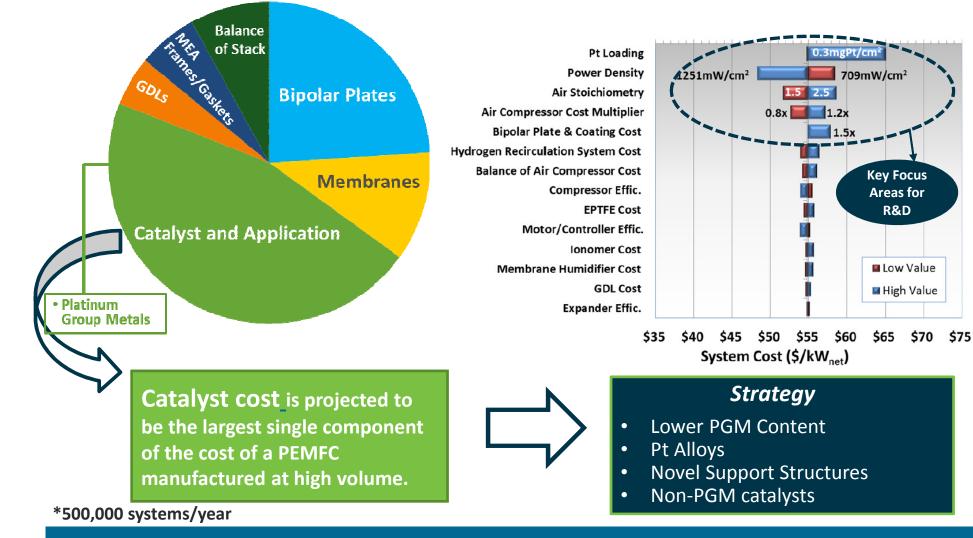
Integrated approach to widespread commercialization of H₂ and fuel cells


DOE Activities Span from R&D to Deployment

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 6

Fuel Cell Progress and Status

2020 Goals: 65% peak efficiency, \$40/kW, 5000 hour durability 2015 Status: 60% peak efficiency, \$53/kW, 3900 hour durability



Significant progress but fuel cell cost reduction is leveling off. Further R&D is needed to overcome challenges - durability <u>and</u> cost.

Fuel Cell R&D Focus and Priorities

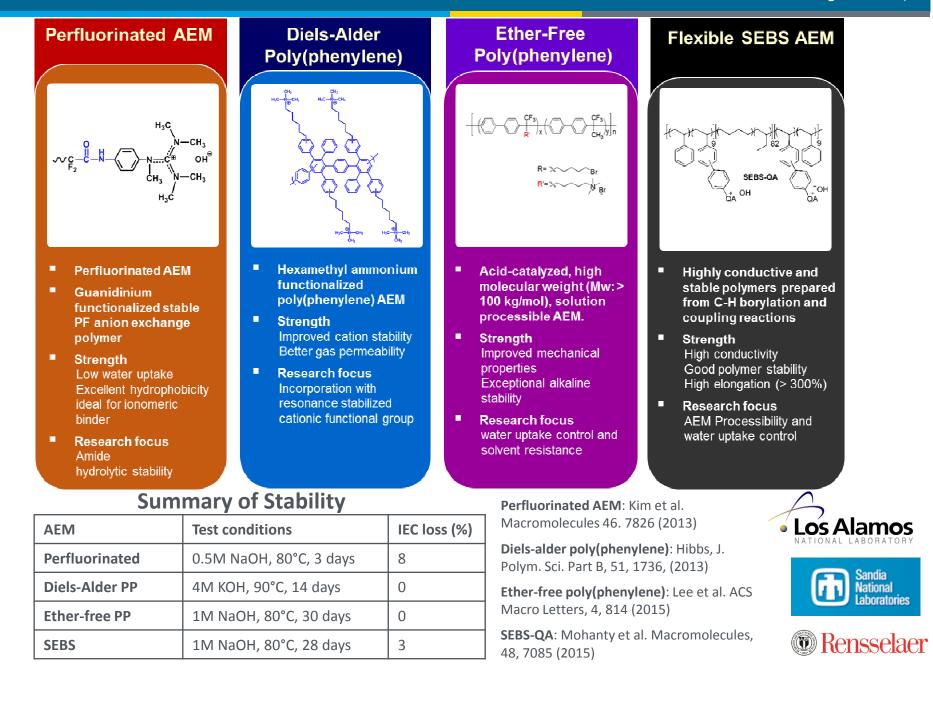
PEMFC Stack Cost Breakdown

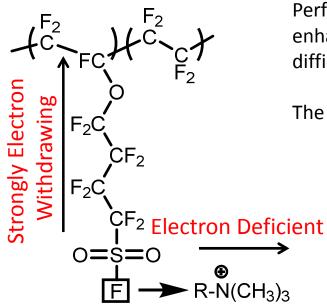
Sensitivity Analysis

Strategic Technical Analysis Guides Focus Areas for R&D and Priorities

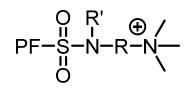
Characteristic	Units	Status	2020 Targets
Cost ^a	\$ / kW _{net}	17	14
Durability with cycling	Hours	2,500	5,000
Startup/shutdown durability ^e	Cycles	_	5,000
Performance @ 0.8 V	mA / cm ²	240	300
Performance @ rated power (150 kPa abs)	mW / cm ²	810	1,000
Robustness (cold operation)		1.09	0.7
Robustness (hot operation)		0.87	0.7
Robustness (cold transient)		0.84	0.7

* Preliminary

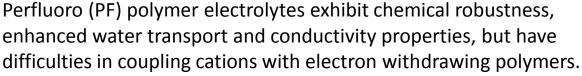

Updated technical targets to be released in 2016


AEMFC Milestones (Preliminary)

- Q2, 2017: Develop anion-exchange membranes with an area specific resistance ≤ 0.1 ohm cm², maintained for 500 hours during testing at 600 mA/cm² at T >60 °C.
- **Q4, 2017:** Demonstrate alkaline membrane fuel cell peak power performance > 600 mW/cm² on H_2/O_2 (maximum pressure of 1.5 atma) in MEA with a total loading of $\leq 0.125 \text{ mg}_{PGM}/\text{cm}^2$.
- Q2, 2019: Demonstrate alkaline membrane fuel cell initial performance of 0.6 V at 600 mA/cm² on H₂/air (maximum pressure of 1.5 atma) in MEA a total loading of < 0.1 mg_{PGM}/cm², and less than 10% voltage degradation over 2,000 hour hold test at 600 mA/cm² at T>60 °C. Cell may be reconditioned during test to remove recoverable performance losses.
- Q2, 2020: Develop non-PGM catalysts demonstrating alkaline membrane fuel cell peak power performance > 600 mW/cm² under hydrogen/air (maximum pressure of 1.5 atma) in PGM-free MEA.


AEM Development of LANL-Led AMFC Project

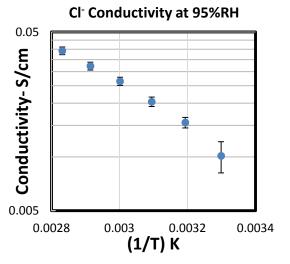
U.S. DEPARTMENT OF ENERGY Renewable Energy Fuel Cell Technologies Office | 11



1. Novel Chemistry

Project Partners:

LBNL **ORNL/Univ.** of Tennessee **Colorado School of Mines 3M**

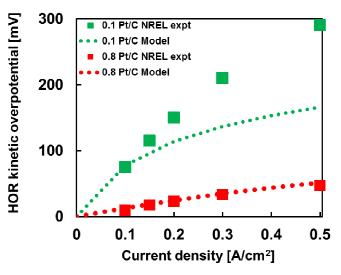


The project team is:

- 1. Developing Novel Chemistries
- 2. Characterizing AEMs for properties and durability
- 3. Developing and applying novel diagnostics and

computational models to elucidate AMFC performance/losses.

2. AEM Characterization



3. HOR exchange current density model vs data

U.S. DEPARTMENT OF

Energy Efficiency &

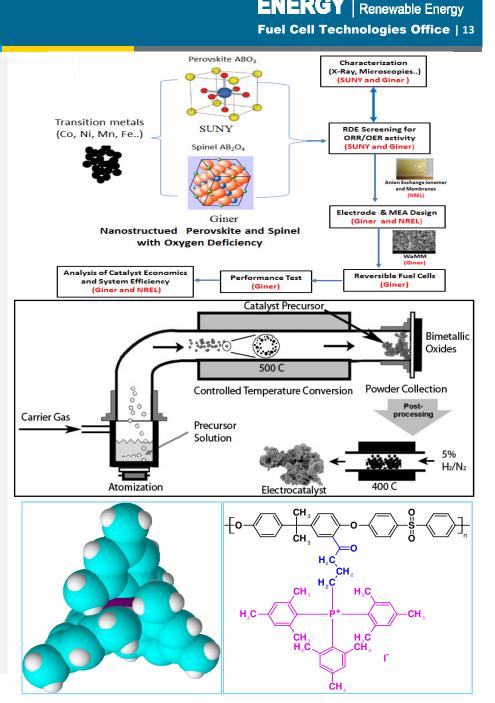
Renewable Energy

Other AEMFC Related Projects

Advanced Catalysts and MEAs for Reversible Alkaline Membrane Fuel Cells

<u>Giner, Inc</u>. with University of Buffalo-SUNY and NREL

Develop innovative non-PGM bifunctional catalysts for alkaline membrane reversible fuel cells for hydrogen energy storage.


Development of non-PGM Catalysts for Hydrogen Oxidation Reaction in Alkaline Media

University of New Mexico with IRD Fuel Cells, Pajarito Powder, and LANL

Develop Non-PGM Catalysts for HOR in AMFC and integrate with LANL ionomer technology into catalyst layer in an MEA.

Highly Stable Anion-Exchange Membranes for High-Voltage Redox-Flow Batteries

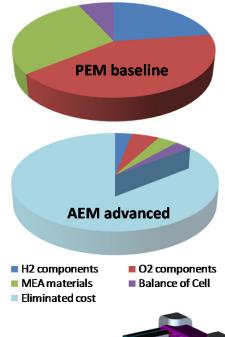
<u>University of Delaware</u> with NREL Develop sterically protected cation for stable alkaline membranes for energy storage and power generation applications.

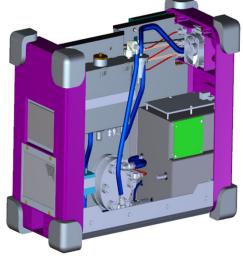
U.S. DEPARTMENT OF

Energy Efficiency &

AEM Electrolysis Projects

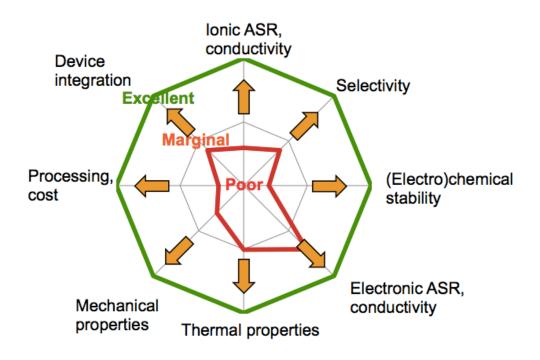
High Performance Platinum Group Metal Free Membrane Electrode Assemblies Through Control of Interfacial Processes


<u>Proton OnSite</u> with Northeastern University, Penn State, and University of New Mexico Development and scale-up of PGM-free AEM electrolysis cells to enable up to 75% reduction in stack capital cost compared to PEM electrolysis


Economical Production of Hydrogen Through Development of Novel, High Efficiency Electrocatalysts for Alkaline Membrane Electrolysis (SBIR)

<u>Proton OnSite</u> with Illinois Institute of Technology, Georgia Tech, and Pajarito Powder

Work toward commercializing the first alkaline membrane-based water electrolysis product through the use of high efficiency, low pgm electrocatalysts and other advanced, low cost materials as well as system development.


Cost Comparison of PEM and AEM electrolyzer stacks

U.S. DEPARTMENT OF **Energy Efficiency &** ENERGY Renewable Energy **ElectroCat (Electrocatalysis Consortium)** Fuel Cell Technologies Office | 15 Goal Mission Accelerate the deployment of fuel Develop and implement PGM-free catalysts by: cell systems by eliminating the use of PGM catalysts streamlining access to unique synthesis and characterization tools across national labs **Partners** developing missing strategic capabilities curating a public database of Argon Los Alamos information **The Bigger Picture ElectroCat** Electrocatalysis Consortium **High-throughput Design and synthesis** materials discovery, of PGM-free catalysts Part of characterization, and and electrodes testing **Energy Materials Network** U.S. Department of Energy www.electrocat.org

ARPA-E believes tremendous opportunities exist in developing a new generation of enabling **components** built with solid ion conductors.

FOA Categories

- 1. Li ion conductors that enable the cycling of Li metal without shorting
- Selective and low-cost separators for batteries with liquid reactants (*e.g.*, flow batteries)
- 3. Alkaline conductors with high chemical stability and conductivity
- Other approaches that could achieve the IONICS Program Objectives.

*Integration and Optimization of Novel Ion Conducting Solids

IONICS FOA Sect. I.B.1 (Summary), pg. 4; Sect. I.B.2 (Program Context and Background), pg. 5; 1.C (Program Objectives), pg. 10.

Thank You

Dr. Dimitrios Papageorgopoulos Program Manager, Fuel Cells Fuel Cell Technologies Office Dimitrios.Papageorgopoulos@ee.doe.gov

hydrogenandfuelcells.energy.gov