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Paradigm Shift in Power System Operation 

and Planning
• Power System Fundamentals: Non-Storable Electric Power 

+ Uncertainty + Limited Control of Load Flow  => Need to

– Procure and Deploy Reserves for System Stability

– Manage Transmission (Line overload) and Distribution (Voltage 

bounds and Transformer) Congestion. 

• Newcomers and Generation Mix: Renewables (Centralized 

and Distributed)   , Flexible Gen. (CCGT)    , Inflexible Gen. 

(nuclear, coal)    , Flexible Loads (EV)   Distributed 

Resources (GFA, Inverters)   , Inflexible Loads (Lights, 

capacity demands)   , Reserve Requirements   , Congestion   

and/or Equipment Loss of Life    &    .

• Will Familiar Pattern of Generation Following-Consumption 

and Providing-Reserves be Replaced  (at Least Partly)  by 

Consumption-Following-Generation and Providing-

Reserves? 2



Some Key Issues
• At the transmission Network: 

– Transmission Line Congestion 

– Stability: Reserve Procurement and Deployment

• At the distribution Networks:

– Transformer overloading

– Losses (real and reactive power)

– Voltage Control (real and reactive power)

• T&D interface

– Retail Response to Transmission needs/MCs

– Deliverability of Retail Response/Reserve Offers
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DER Examples and their Capabilities

• PV: Distributed Non-Controllable Generation of Real Power 

BUT Controllable Volt/Var inverters can provide Reactive 

Power Compensation using excess inverter capacity

• EV: Storage Like Flexible Demand AND Reactive Power 

Compensation

• Electric Space Conditioning/Heat Pumps: Flexible/ Storage 

Like loads (precooling-preheating) with often Reactive Power 

Compensation capability (e.g., Var. Speed Drives)

• Computing: Sever farms, Data Centers

• Duty Cycle Appliances, Distributed Storage,…

All of the above Can promise and deploy reserves. 
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Reactive Power Affects All Costs and 

Voltage magnitudes!
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Planning to Operation Practices Incorporated 

in Today’s Power Markets are Surprising Useful 
(and Adaptable?)

• Generation Capacity and Transmission 

Congestion (FTR) Markets – Years to Months

• Forward Energy Commodity Markets – Months

• Energy and Reserve Co-Clearing Markets:

– Day Ahead: Multiple Hours

– Hour Ahead/Adjustment Market – Hour

• Reserve Deployment Dynamics:

– Operating: 5 min., 

– Regulation Service (AGC Centralized): 2-4 sec

– Frequency Control (Decentralized): Real-Time 8



Extended Market Clearing =>

I. T&D Locational Marginal Prices (T&DLMP) 

II. Scheduling of DER Capacity among Real and Reactive Power 

and Reserves.

• the Marginal/Incremental cost to the 

Power System associated with Delivering a 

unit of Service x to location n at time t. This 

results in optimal operating decisions.

• x ranges over real, reactive power and 

reserves

• n ranges over T&D busses

9
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LMPs : Wholesale – High Voltage --

Market Clearing (DC approximation)
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LMP price Relations
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Proposed Distribution Market Problem formulation:
Minimize Utility Loss, Real and React. Power Cost (incl Losses), Asset Life 

Loss, and Volt. Control  Costr, s.t. Load Flow , Capac., Volt. Magnitude Constr.
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Over DER real, reactive power and reserves and substation voltage V∞: 

Sum over all hours. Note Sum over t and (t) argument not shown to avoid notational Clutter.

Opportunity Cost of Q 

at Substation
Substation Real P

Cost of Transf. life loss.

Value of Sec. Reserves 

at Substation

Cost of deviating from

Nominal V a substation

Utility (- or +) of State X

at the end of hour t

Expected Average cost 

of deployment of          

during hour t

j
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Subject to: Load Flow relations when the regulation signal y=0  (relaxed brunch flow model)
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Subject to: Load Flow relations when the regulation signal y=-1  (relaxed brunch flow model)
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LMP , DLMP Relations (see next slides)
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Real Power DLMP Components
Note: Cost of modulating V∞ modeled approximately and conservatively low
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Reactive Power DLMP Components
Note: Cost of modulating V∞ modeled approximately and conservatively low
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Simulation Results: Summer Peak Day 

Real DLMP Behavior
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Simulation Results: Summer Peak Day 

Reactive DLMP Behavior
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DLMP Components: Max DLMP/LMP examples
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P-DLMP(351,7am) P-DLMP(619,5pm) Q-DLMP(351,7am) Q-DLMP(619,5pm)

LMP 45.1 85.04 Real Component 0.270599982 4.166960043

Real Losses 0.721599986 23.55608022 Reactive Component 7.859643732 56.97063807

Reactive Component 0.105444136 15.98801817 Transformer Comp. 17.19 0.21

Transformer Comp 29.4 0.459999999 Voltage Component 0.005611093 0

Voltage Component 0.007508159 0 TOTAL 25.32585481 61.34759811

TOTAL 75.33455228 125.0440984



Example from Summer Peak day 

demonstrating that DLMPs Provide Locational 

Incentives and Optimal Reactive Power 

Compensation (negative Q is possible)
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Hour 2pm

Bus 689, 
V=1.1! 

BINDING

PV real (kW) PV reactive (kVar) P-DLMP Q-DLMP LMP

4.44  -1.43 14.52 -2.87E-06 89.21

Bus 619, 
V=0.95,

NOT Binding

PV real (kW) PV reactive (kVar) P-DLMP Q-DLMP LMP

4.44 1.46 111.83 37.88 89.21



Illustrative Numerical Results: Day ahead Distribution Market Clearing 

of a 800 node Upstate NY Feeder on a Summer Day

Market Structure Average No Q from DER LMP  No Q from DER Full DLMP

A Substation Transaction Costs for P 13281 13172 13235

B Substation Transaction Costs for Q 1182 1133 777

Total Substation Cost A+B 14463 14305 14013

C Charges to Space Conditioning for P 743 721 703

D Charges to Space Conditioning for Q 212 188 140

Total Space Conditioning Charges C+D 955 909 843

E Charges to EV for P 220 127 127

F Charges to Inflexible Loads for P 15102 15037 14869

G Charges to Inflexible Loads for Q 2089 2027 1609

Total Inflexible Load Charges F+G 17190 17065 16478

H Income of EV for Q provision 0 0 134

Net EV Charges E-H 220 127 -8

I Income of PV for P provision 1494 1493 1408

J Income of PV for Q provision 0 0 169

Total PV Income I+J 1494 1493 1577

K Total Charges (K=C+D+E+F+G) 18365 18101 17448

L Total DER income (L=H+I+J) 1494 1493 1711

M Net Cost of Distribution Participants (M=K-L) 16871 16607 15737

N Distribution Network Rent (N=M-A-B) 2408 2302 1724
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Minimum, Maximum and Substation Reserve DLMPs.



Size of Market for Reactive Power
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Indicative Estimates of Average Price of Reactive Power against Power 

Electronics Capacity Penetration as a % of Maximum Hourly Reactive Power 

Consumed. PF     .8    .88     .92     .95  

Q/P .75  .54     .426   .33

21
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Issue: Centralized Market Clearing Approach is 

Not Tractable. Why?

• Transmission (HV) System (Real Power and Reserves)

– Generator costs minimization and associated constraints

– Load Flow (DC approx. OK) and Transmission Line Congestion

– Regional Reserve Requirements

– Line Losses (1.5% on average) 

• Distribution Network (Real and Reactive Power and Reserves) 

– DER Cost Minimization and associated constraints 

INTRACTABLE in Centralized Model!

– Transformer Life Degradation

– Line Losses (6% on average)

– Reactive Power Compensation 

– Voltage Control

– Load Flow. Non Linear AC relationships required!

• BTW, why is Reactive Power not Priced in HV Markets?
27



Imbalances & Prices

Sub-problem Solutions

ADMM, a PMP Algorithm May Achieve Network Asset and 

DER Objective maximization Consensus Tractably!.

Asynchronous/Parallel Sub-problem Solution: 

Each device (DER and Line) solves individual sub-problem

Each Bus calculates imbalances & prices

Iterative Process, until bus violations→0 

Convergence? 

PMP based convergence Certificate? 

Vulnerability to Malicious Communication Interception?



Distributed Market Clearing Algorithm 

Challenges
• Regional reserve requirement constraints 

involve multiple transmission and T-D 

interface busses.

• Reserve deliverability at Distribution 

Feeders must observe Voltage Constraints 

(Congestion) under Reserve Deployment 

Contingencies.

• Reactive Power Compensation must be 

Sensitive to Reserve Deployment 

Contingency Voltage Limitations. 
29



Full T&D Market Supports Innovation!
• Operational and Investment Efficiencies => 

Resilience of Infrastructure

• Efficient Supply of Fast Reserves => Renewable 

Generation Integration

• Sustainable Marginal Losses Reflected in 

T&DLMPs=> Distributed Adaptation to Short 

term and Anticipation of Long Term Costs/Benefits

• Reactive Power Pricing allows Dual Use of Power 

Electronics => Operational and Investment 

Efficiencies (Distributed PV, EVs, Heat Pumps, 

New Devices and controllers…)

30



Open Issues Remain, However, 

Prospects Promising…
• Interplay of Real Power Reserves and Reactive Power provision by 

DERs for Reserve Deliverability Slow Voltage Constraint Dual 

Variables Convergence in Distributed Algorithms. 

• Proof that Price Directed Dynamic DER work in practice as 

advertised

• Market Deficiencies (market power/capacity withholding, strategic 

behavior) must be further studied and their prevalence empirically 

evaluated in practice. Hence, Regulatory issues are still on the table

• Communication Architecture to support distributed business models 

still on the table, including malicious attacks.

• Will New Business Models/Entities step up to supplement/replace 

existing utility structures?

• New Financial Instruments for risk mitigation? 

– Hedging

– Auctions for futures, DER reserve deliverability a la FTRs, more……
31


