DOE EAC Panel on Valuation and Integration of DERs

Comments on the Extension of Dynamic Power Markets to Distribution Network Participants, "Smart Power Distribution Networks: Adaptive Flexible Loads and Resources"

Washington DC, March 17, 2016
Michael Caramanis
mcaraman@bu.edu

Paradigm Shift in Power System Operation and Planning

- and Planning
 Power System Fundamentals: Non-Storable Electric Power
 + Uncertainty + Limited Control of Load Flow => Need to
 - Procure and Deploy Reserves for System Stability
 - Manage Transmission (Line overload) and Distribution (Voltage bounds and Transformer) Congestion.
- Newcomers and Generation Mix: Renewables (Centralized and Distributed), Flexible Gen. (CCGT), Inflexible Gen. (nuclear, coal), Flexible Loads (EV) Distributed Resources (GFA, Inverters), Inflexible Loads (Lights, capacity demands), Reserve Requirements, Congestion and/or Equipment Loss of Life
- Will Familiar Pattern of <u>Generation</u> Following-Consumption and Providing-Reserves be Replaced (at Least Partly) by <u>Consumption</u>-Following-Generation and Providing-

Reserves?

Some Key Issues

- At the transmission Network:
 - Transmission Line Congestion
 - Stability: Reserve Procurement and Deployment
- At the distribution Networks:
 - Transformer overloading
 - Losses (real and reactive power)
 - Voltage Control (real and reactive power)
- T&D interface
 - Retail Response to Transmission needs/MCs
 - Deliverability of Retail Response/Reserve Offers

DER Examples and their Capabilities

- **PV**: Distributed Non-Controllable Generation of Real Power BUT Controllable Volt/Var inverters can provide Reactive Power Compensation using excess inverter capacity
- **EV**: Storage Like Flexible Demand AND Reactive Power Compensation
- Electric Space Conditioning/Heat Pumps: Flexible/ Storage Like loads (precooling-preheating) with often Reactive Power Compensation capability (e.g., Var. Speed Drives)
- Computing: Sever farms, Data Centers
- **Duty Cycle** Appliances, Distributed Storage,... All of the above Can promise and deploy reserves.

Incurred Cost Distribution, Congestion, Reserves, Voltage Control, Losses, Transformers, Deliverability

 $LMPP_n^t = \Pi_n^{E,t} = \text{Locational Marginal Price of Real Power at bus n, during hour t}$ $ZMP\Re_n^t = \Pi_n^{\Re,t} = \text{Locational Zonal Price of Reserves at bus n} \in z\text{one Z, during hour t}$

$$\Re_{n}^{t} \approx \sum_{i} \{\Re_{n_{i}}^{t} + 2R_{n_{i}}P_{n_{i}}^{t}\}$$

$$Q_{n}^{t} \approx \sum_{i} \{Q_{n_{i}}^{t} + X_{n_{i}}[(P_{n_{i}}^{t})^{2} + (Q_{n_{i}}^{t})^{2}]\}$$

$$P_{n}^{t} \approx \sum_{i} \{P_{n_{i}}^{t} + R_{n_{i}}[(P_{n_{i}}^{t})^{2} + (Q_{n_{i}}^{t})^{2}]\}$$

Interface between **Transmission** & Distribution

$$P_n^t \approx \sum_{i} \{P_{n_i}^t + R_{n_i}[(P_{n_i}^t)^2 + (Q_{n_i}^t)^2]\}$$

$$LMPP_n^t = \prod_{n=0}^{E,t} \epsilon_{6-115 \text{ ky lines}}$$

$$ZMP\mathfrak{R}_n^t = \Pi_n^{\mathfrak{R},t}$$

 $P_{n_i}^t, \mathrm{Q}_{n_i}^t, \mathfrak{R}_{n_i}^t$

 $V_{n_i} \leq V_{n_i}^t \leq \overline{V}_{n_i}$

TransfLossOfLife^t =
$$\Gamma[(P_n^t)^2 + (Q_n^t)^2]$$

Transmission lines 230-500 kV

Network switchyard

Generator

"THE GRID"

Reactive Power Affects All Costs and Voltage magnitudes!

$$P_{n_i}$$
, Real and Reactive Consumption at Distribution Network Location i below Sub-Transmission bus n

$$Q_n \approx \sum_{i} \{Q_{n_i} + x_{n,n_i} [(P_{n,n_i})^2 + (Q_{n,n_i})^2]\}$$
Reactive Power at Sub

$$P_n \approx \sum_{i} \{P_{n_i} + r_{n,n_i} [(P_{n,n_i})^2 + (Q_{n,n_i})^2]\}$$
 Real Power at Sub

Transf Loss Of Life =
$$\Gamma[(P_{n,n_i})^2 + (Q_{n,n_i})^2]$$

$$\underline{V}_{n_i} \leq V_{n_i} \leq \overline{V}_{n_i}$$
 Voltage Level Control

$$\Delta V^{2} \approx (V_{n}^{t})^{2} - (V_{n_{i}}^{t})^{2} \approx 2(r_{n,n_{i}}P_{n_{i}}^{t} + x_{n,n_{i}}Q_{n_{i}}^{t})$$

Planning to Operation Practices Incorporated in Today's Power Markets are Surprising Useful (and Adaptable?)

- Generation Capacity and Transmission
 Congestion (FTR) Markets <u>Years to Months</u>
- Forward Energy Commodity Markets <u>Months</u>
- Energy and Reserve Co-Clearing Markets:
 - Day Ahead: Multiple Hours
 - Hour Ahead/Adjustment Market Hour
- Reserve Deployment Dynamics:
 - Operating: 5 min.,
 - Regulation Service (AGC Centralized): 2-4 sec
 - Frequency Control (Decentralized): Real-Time

Extended Market Clearing =>

- I. T&D Locational Marginal Prices (T&DLMP)
- II. Scheduling of DER Capacity among Real and Reactive Power and Reserves.
 - $\pi_n^x(t)$ | the Marginal/Incremental cost to the Power System associated with Delivering a unit of Service x to location n at time t. This results in optimal operating decisions.
 - x ranges over real, reactive power and reserves
 - n ranges over T&D busses

LMPs: Wholesale – High Voltage -- Market Clearing (DC approximation)

$$\min_{P_n^j, R_n^j} \sum_{j,n,t} u_n^j P_n^j(t) + \sum_{j,n,t} \overline{J}_n^j(R_n^j(t))$$

subject to

$$\sum_{j,n,t} P_n^j(t) + Losses = 0 \quad \to \lambda(t); \quad \forall t \quad P_n^{j \in \text{gen}}(t) \ge 0, \ P_n^{j \in \text{dem}}(t) \le 0$$

$$\sum_{i,n\in\mathbb{Z}} R_n^j(t) \ge \mathfrak{R}_Z \longrightarrow \pi_Z^R(t); \quad \forall t$$

$$\overline{P}_{n,n'}(t) \leq P_{n,n'}^{\text{lingap}}(t) + \sum_{\hat{n}} P_{\hat{n}}(t) \operatorname{ShF}_{n,n'}^{\hat{n}}(t) \leq \overline{P}_{n,n'}(t) \to \underline{\mu}_{n,n'}(t), \overline{\mu}_{n,n'}(t); \forall t$$

$$P_n(t) = \sum_{i} P_n^{j}(t)$$
; plus eapacity constraints

$$\operatorname{ShF}_{n,n'}^{\hat{n}}(t) \equiv \frac{\partial P_{n,n'}}{\partial P_{\hat{n}}}$$
 the line flow shift factor -- linearization -- at t

LMP price Relations

$$\pi_{\hat{n}}^{P}(t) = \lambda(t)(1 + \frac{\partial Losses}{\partial P_{\tilde{g}(\hat{n})}}) + \sum_{n,n'} \mu_{n,n'}(t)P_{n}(t)ShF_{n,n'}^{\hat{n}}(t)$$
where $\mu_{n,n'}(t) \equiv [\bar{\mu}_{n,n'}(t) - \mu_{n,n'}(t)]$

$$\pi_{\hat{n}}^{R}(t) = \pi_{Z}^{R}(t) = \max_{j, \hat{n} \in Z, R_{\hat{n}}^{j} > 0} \left[|\pi_{\hat{n}}^{P}(t) - u_{\hat{n}}^{j}| + \partial \overline{J}_{\hat{n}}^{j}(R_{\hat{n}}^{j}) / \partial R_{\hat{n}}^{j} \right]$$

Proposed Distribution Market Problem formulation:

Minimize Utility Loss, Real and React. Power Cost (incl Losses), Asset Life Loss, and Volt. Control Costr, <u>s.t.</u> Load Flow , Capac., Volt. Magnitude Constr.

Minimize

Over DER real, reactive power and reserves and substation voltage V_∞: Sum over all hours. Note Sum over t and (t) argument not shown to avoid notational Clutter.

$$\pi_{\infty}^{P}P_{\infty} + \pi_{\infty}^{OC}(C_{\infty} - \sqrt{C_{\infty}^{2} - Q_{\infty}^{2}}) + \pi_{\infty}^{R} \frac{P_{\infty}^{R,up} - P_{\infty}^{R,down}}{2} + c_{\infty}^{v}(v_{\infty} - 1)^{2}$$
Substation Real P

Cost of deviating from

Substation Real P

at Substation

Value of Sec. Reserves at Substation

Nominal V a substation

$$+ \sum_{j,b} u_b^{j}(X_b^{j}) + \sum_{j,b} \overline{J}_b^{j}(R_b^{j}) + \sum_{b,b' \in tr} \Gamma(S_{b,b'})$$

Utility (- or +) of State X at the end of hour t

Expected Average cost of deployment of R_h^J during hour t

Cost of Transf. life loss.

Subject to: constrains shown below

Subject to: Load Flow relations when the regulation signal y=0 (relaxed brunch flow model)

$$\ell_{b,b'} = \frac{P_{b,b'}^2 + Q_{b,b'}^2}{v_b} = \frac{S_{b,b'}^2}{V_b^2} \qquad current \, sq. \tag{A1}$$

$$v_{b'} = v_b - 2(r_{b,b'}P_{b,b'} + x_{b,b'}Q_{b,b'}) + (r_{b,b'}^2 + x_{b,b'}^2)\ell_{b,b'}$$
(A2)

$$\sum_{i} P_b^j = \sum_{b'} P_{b,b'} \to \pi_b^P \tag{A3}$$

$$\sum_{j} Q_b^{j} = \sum_{b'} Q_{b,b'} \to \pi_b^{\mathcal{Q}} \tag{A4}$$

$$P_{b,b'} + P_{b',b} = r_{b,b'}\ell_{b,b'} \qquad real losses \tag{A5}$$

$$Q_{b,b'} + Q_{b',b} = x_{b,b'}\ell_{b,b'} \qquad reactive losses \tag{A6}$$

$$\underline{\underline{v}} \le v_b \le \overline{v} \to \underline{\mu}_b, \overline{\mu}_b \qquad \mu_b \equiv \overline{\mu}_b - \underline{\mu}_b \tag{A7}$$

Subject to: Load Flow relations when the regulation signal y=1 (relaxed brunch flow model)

$$\ell_{b,b'}^{R,up} = \frac{(P_{b,b'}^{R,up})^2 + (Q_{b,b'}^{R,up})^2}{v_b^{R,up}}$$
(B1)

$$v_{b'}^{R,up} = v_b^{R,up} - 2(r_{b,b'}P_{b,b'}^{R,up} + x_{b,b'}Q_{b,b'}^{R,up}) + (r_{b,b'}^2 + x_{b,b'}^2)\ell_{b,b'}^{R,up}$$
(B2)

$$\sum_{i} P_{b}^{j} + \sum_{i} R_{b}^{j} = \sum_{b'} P_{b,b'}^{R,up} \to \pi_{b}^{P,up}$$
(B3)

$$\sum_{i} Q_b^{j,up} = \sum_{b'} Q_{b,b'}^{R,up} \to \pi_b^{Q,up}$$
(B4)

$$P_{b,b'}^{R,up} + P_{b',b}^{R,up} = r_{b,b'} \ell_{b,b'}^{R,up}$$
(B5)

$$Q_{b,b'}^{R,up} + Q_{b',b}^{R,up} = x_{b,b'} \ell_{b,b'}^{R,up}$$
(B6)

$$\underline{v} \le v_b^{R,up} \le \overline{v} \to \mu_b^{R,up}, \overline{\mu}_b^{R,up} \tag{B7}$$

Subject to: Load Flow relations when the regulation signal y=-1 (relaxed brunch flow model)

$$\ell_{b,b'}^{R,down} = \frac{(P_{b,b'}^{R,down})^2 + (Q_{b,b'}^{R,down})^2}{v_b^{R,down}}$$
(C1)

$$v_{b'}^{R,down} = v_b^{R,down} - 2(r_{b,b'}P_{b,b'}^{R,down} + x_{b,b'}Q_{b,b'}^{R,down}) + (r_{b,b'}^2 + x_{b,b'}^2)\ell_{b,b'}^{R,down}$$
(C2)

$$\sum_{j} P_b^j - \sum_{j} R_b^j = \sum_{b'} P_{b,b'}^{R,down} \to \pi_b^{P,down}$$
(C3)

$$\sum_{j} Q_{b}^{j,down} = \sum_{b'} Q_{b,b'}^{R,down} \to \pi_{b}^{Q,down}$$
(C4)

$$P_{b,b'}^{R,down} + P_{b',b}^{R,down} = r_{b,b'} \ell_{b,b'}^{R,down}$$
(C5)

$$Q_{b,b'}^{R,down} + Q_{b',b}^{R,down} = x_{b,b'} \ell_{b,b'}^{R,down}$$
(C6)

$$\underline{v} \le v_b^{R,down} \le \overline{v} \to \underline{\mu}_b^{R,down}, \overline{\mu}_b^{R,down} \tag{C7}$$

Subject to: Device Specific Constraints

 $R_b^j \le \min(P_b^j, C_b^j - P_b^j)$ DER Secondary Reserves

$$(P_b^j)^2 + (Q_b^j)^2 \le (C_b^j)^2$$
 DER Reactive Power Capabilities:

Note: DER Reactive Compensation can take continuous values, + or - =>, optimal compensation is possible, UNLIKE Utility Capacitors!

$$\left(P_b^j + R_b^j\right)^2 + \left(Q_b^{j,up}\right)^2 \le \left(C_b^j\right)^2$$

$$\left(P_b^j - R_b^j\right)^2 + \left(Q_b^{j,down}\right)^2 \le \left(C_b^j\right)^2$$

State Variables, X(t), Dynamics (example of $X \in \{SoC, T\}$

$$SoC_b^{EV}(t) = SoC_b^{EV}(t-1) + \eta P_b^{EV}(t)$$

$$T_b^{j,in}(t) = T_b^{j,in}(t-1) + a(V_b)P_b^{j}(t) - b\left[\frac{T_b^{j,in}(t-1) + T_b^{j,in}(t)}{2} - T_b^{j,out}(t)\right]$$

LMP, DLMP Relations (see next slides)

$$\pi_b^P = \pi_{\infty_s}^P \frac{\partial P_{\infty_s,\infty_{s^*}}}{\partial \hat{P}_b} + \frac{\pi_{\infty_s}^{OC} Q_{\infty_s,\infty_{s^*}}}{\sqrt{C_{\infty_s}^2 - Q_{\infty_s,\infty_{s^*}}^2}} \frac{\partial Q_{\infty_s,\infty_{s^*}}}{\partial \hat{P}_b} + \sum_{b'} \mu_{b'} \frac{\partial V_{b'}}{\partial \hat{P}_b} + \sum_{\hat{b},\hat{b}' \in tr} \frac{\partial \Gamma(\ell_{\hat{b},\hat{b}'})}{\partial \hat{P}_b}$$

$$\pi_{b}^{Q} = \pi_{\infty_{s}}^{P} \frac{\partial P_{\infty_{s},\infty_{s^{*}}}}{\partial \hat{Q}_{b}} + \frac{\pi_{\infty_{s}}^{OC} Q_{\infty_{s},\infty_{s^{*}}}}{\sqrt{C_{\infty_{s}}^{2} - Q_{\infty_{s},\infty_{s^{*}}}^{2}}} \frac{\partial Q_{\infty_{s},\infty_{s^{*}}}}{\partial \hat{Q}_{b}} + \sum_{b'} \mu_{b'} \frac{\partial v_{b'}}{\partial \hat{Q}_{b}} + \sum_{\hat{b},\hat{b}' \in tr} \frac{\partial \Gamma(\ell_{\hat{b},\hat{b}'})}{\partial \hat{Q}_{b}}$$

$$\pi_b^R = \pi_{\infty_s}^R \frac{\partial R_{\infty_s,\infty_{s^*}}}{\partial \hat{R}_b} + \sum_{b'} \mu_{b'}^{up} \frac{\partial v_{b'}^{up}}{\partial \hat{R}_b} + \sum_{b'} \mu_{b'}^{dn} \frac{\partial v_{b'}^{dn}}{\partial \hat{R}_b}$$

$$\pi_b^{Q,up} = \pi_{\infty_s}^R \frac{\partial P_{\infty_s,\infty_{s^*}}^{up}}{\partial \hat{Q}_b^{up}} + \sum_{b'} \mu_{b'}^{up} \frac{\partial v_{b'}^{up}}{\partial \hat{Q}_b^{up}}$$

$$\pi_b^{Q,dn} = -\pi_{\infty_s}^R \frac{\partial P_{\infty_s,\infty_{s^*}}^{an}}{\partial \hat{Q}_b^{dn}} + \sum_{b'} \mu_{b'}^{dn} \frac{\partial v_{b'}^{dn}}{\partial \hat{Q}_b^{dn}}$$

Real Power DLMP Components

Note: Cost of modulating V_∞ modeled approximately and conservatively low

$$\pi_b^P = \pi_{\infty_s}^P \frac{\partial P_{\infty_s,\infty_{s^*}}}{\partial \hat{P}_b} + \frac{\pi_{\infty_s}^{OC} Q_{\infty_s,\infty_{s^*}}}{\sqrt{C_{\infty_s}^2 - Q_{\infty_s,\infty_{s^*}}^2}} \frac{\partial Q_{\infty_s,\infty_{s^*}}}{\partial \hat{P}_b} + \frac{\partial P_{\infty_s,\infty_{s^*}}}{\sqrt{C_{\infty_s}^2 - Q_{\infty_s,\infty_{s^*}}^2}} \frac{\partial Q_{\infty_s,\infty_{s^*}}}{\partial \hat{P}_b}$$

$$\sum_{b'} \mu_{b'} \frac{\partial v_{b'}}{\partial \hat{P}_b} + \sum_{\hat{b}, \hat{b}' \in tr} \frac{\partial \Gamma(\ell_{\hat{b}, \hat{b}'})}{\partial \hat{P}_b}$$

Note:
$$\frac{\partial P_{\infty_s,\infty_{s^*}}}{\partial \hat{P}_b} = (1 + \frac{\partial \text{TotalPLosses}}{\partial \hat{P}_b})$$

$$\frac{\partial Q_{\infty_s,\infty_{s^*}}}{\partial \hat{P}_b} = \frac{\partial \text{TotalQLosses}}{\partial \hat{P}_b}$$

Reactive Power DLMP Components

Note: Cost of modulating V_∞ modeled approximately and conservatively low

$$\pi_b^Q = \pi_{\infty_s}^P \frac{\partial P_{\infty_s,\infty_{s^*}}}{\partial \hat{Q}_b} + \frac{\pi_{\infty_s}^{OC} Q_{\infty_s,\infty_{s^*}}}{\sqrt{C_{\infty_s}^2 - Q_{\infty_s,\infty_{s^*}}^2}} \frac{\partial Q_{\infty_s,\infty_{s^*}}}{\partial \hat{Q}_b} + \frac{\partial Q_{\infty_s,\infty_{s^*}}}{\sqrt{C_{\infty_s}^2 - Q_{\infty_s,\infty_{s^*}}^2}} \frac{\partial Q_{\infty_s,\infty_{s^*}}}{\partial \hat{Q}_b}$$

$$\sum_{b'} \mu_{b'} \frac{\partial v_{b'}}{\partial \hat{Q}_b} + \sum_{\hat{b}, \hat{b}' \in tr} \frac{\partial \Gamma(\ell_{\hat{b}, \hat{b}'})}{\partial \hat{Q}_b}$$

Note:
$$\frac{\partial P_{\infty_s,\infty_{s^*}}}{\partial \hat{Q}_b} = \frac{\partial \text{TotalPLosses}}{\partial \hat{Q}_b}$$

$$\frac{\partial Q_{\infty_s,\infty_{s^*}}}{\partial \hat{Q}_b} = (1 + \frac{\partial \text{TotalQLosses}}{\partial \hat{Q}_b})$$

Simulation Results: Summer Peak Day Real DLMP Behavior

Simulation Results: Summer Peak Day Reactive DLMP Behavior

DLMP Components: Max DLMP/LMP examples

	P-DLMP(351,7am)	P-DLMP(619,5pm)		Q-DLMP(351,7am)	Q-DLMP(619,5pm)
LMP	45.1	85.04	Real Component	0.270599982	4.166960043
Real Losses	0.721599986	23.55608022	Reactive Component	7.859643732	56.97063807
Reactive Component	0.105444136	15.98801817	Transformer Comp.	17.19	0.21
Transformer Comp	29.4	0.459999999	Voltage Component	0.005611093	0
Voltage Component	0.007508159	0	TOTAL	25.32585481	61.34759811
TOTAL	75.33455228	125.0440984			

Example from Summer Peak day demonstrating that DLMPs Provide Locational Incentives and Optimal Reactive Power Compensation (negative Q is possible)

Hour 2pm										
Bus 689,	PV real (kW)	PV reactive (kVar)	P-DLMP	Q-DLMP	LMP					
V=1.1! BINDING	4.44	-1.43	14.52	-2.87E-06	89.21					
	PV real (kW)	PV reactive (kVar)	P-DLMP	Q-DLMP	LMP					
Bus 619,		(KVCI)								
V=0.95,										
NOT Binding	4.44	1.46	111.83	37.88	89.21					

Illustrative Numerical Results: Day ahead Distribution Market Clearing of a 800 node Upstate NY Feeder on a Summer Day

	M 1 4 04 4	A N 01 DED	IMP N O (DED	E D MD
	Market Structure	Average No Q from DER	LMP No Q from DER	Full DLMP
Α	Substation Transaction Costs for P	13281	13172	13235
В	Substation Transaction Costs for Q	1182	1133	777
	Total Substation Cost A+B	14463	14305	14013
С	Charges to Space Conditioning for P	743	721	703
	Charges to Space Conditioning for Q	212	188	140
	Total Space Conditioning Charges C+D	955	909	843
Е	Charges to EV for P	220	127	127
F	Charges to Inflexible Loads for P	15102	15037	14869
G	Charges to Inflexible Loads for Q	2089	2027	1609
	Total Inflexible Load Charges F+G	17190	17065	16478
Н	Income of EV for Q provision	0	0	134
	Net EV Charges E-H	220	127	-8
I	Income of PV for P provision	1494	1493	1408
J	Income of PV for Q provision	0	0	169
	Total PV Income I+J	1494	1493	1577
K	Total Charges (K=C+D+E+F+G)	18365	18101	17448
L	Total DER income (L=H+I+J)	1494	1493	1711
М	Net Cost of Distribution Participants (M=K-L)	16871	16607	15737
N	Distribution Network Rent (N=M-A-B)	2408	2302	1724

Minimum, Maximum and Substation Reserve DLMPs.

Size of Market for Reactive Power

Indicative Estimates of Average Price of Reactive Power against Power Electronics Capacity Penetration as a % of Maximum Hourly Reactive Power Consumed. $\sqrt{1 PF^2}$ PF .8 .88 .92 .95

 $Q/P = \frac{\sqrt{1 - PF^2}}{PF} \Rightarrow$

Q/P .75 .54

.426 .33

26

Issue: Centralized Market Clearing Approach is **Not Tractable**. Why?

- Transmission (HV) System (Real Power and Reserves)
 - Generator costs minimization and associated constraints
 - Load Flow (DC approx. OK) and Transmission Line Congestion
 - Regional Reserve Requirements
 - Line Losses (1.5% on average)
- Distribution Network (Real and Reactive Power and Reserves)
 - DER Cost Minimization and associated constraints
 INTRACTABLE in Centralized Model!
 - Transformer Life Degradation
 - Line Losses (6% on average)
 - Reactive Power Compensation
 - Voltage Control
 - Load Flow. Non Linear AC relationships required!
- BTW, why is Reactive Power not Priced in HV Markets?

ADMM, a PMP Algorithm May Achieve Network Asset and DER Objective maximization Consensus **Tractably!**.

Asynchronous/**Parallel** Sub-problem Solution:

Each device (DER and Line) solves individual sub-problem

Each Bus calculates imbalances & prices

Iterative Process, until bus violations→0

Convergence?

PMP based convergence Certificate?

Vulnerability to Malicious Communication Interception?

Distributed Market Clearing Algorithm Challenges

- Regional reserve requirement constraints involve multiple transmission and T-D interface busses.
- Reserve deliverability at Distribution
 Feeders must observe Voltage Constraints
 (Congestion) under Reserve Deployment
 Contingencies.
- Reactive Power Compensation must be Sensitive to Reserve Deployment Contingency Voltage Limitations.

Full T&D Market Supports Innovation!

- Operational and Investment Efficiencies =>
 Resilience of Infrastructure
- Efficient Supply of Fast Reserves => Renewable
 Generation Integration
- Sustainable Marginal Losses Reflected in T&DLMPs=> **Distributed Adaptation** to Short term and Anticipation of Long Term Costs/Benefits
- Reactive Power Pricing allows **Dual Use** of Power Electronics => **Operational and Investment** Efficiencies (Distributed PV, EVs, Heat Pumps, New Devices and controllers...)

Open Issues Remain, However, Prospects Promising...

- Interplay of Real Power Reserves and Reactive Power provision by DERs for Reserve Deliverability Slow Voltage Constraint Dual Variables Convergence in Distributed Algorithms.
- Proof that Price Directed Dynamic DER work in practice as advertised
- Market Deficiencies (market power/capacity withholding, strategic behavior) must be further studied and their prevalence empirically evaluated in practice. Hence, Regulatory issues are still on the table
- Communication Architecture to support distributed business models still on the table, including malicious attacks.
- Will New Business Models/Entities step up to supplement/replace existing utility structures?
- New Financial Instruments for risk mitigation?
 - Hedging
 - Auctions for futures, DER reserve deliverability a la FTRs, more......