High-Efficiency Solid-State Heat Pump Module

2016 Building Technologies Office Peer Review

creativecommons.org

creativecommons.org

Project Summary

Timeline:

Start date: September, 2015

Planned end date: August, 2017

Key Milestones

- 1. Phase 1: Demonstrate >8 °C material-level calorimetric performance that enables an electrocaloric module COP > 6.0
- 2. Phase 2: Demonstrate TRL3 solid-state heat pump module

Budget:

Total Project \$ to Date (through Sept. 2016):

• DOE: \$700,692

Cost Share: \$233,564

Key Partners: (none)

Project Outcome:

United Technologies Research Center shall demonstrate a solid state (refrigerant-free), high efficiency, compact, zero direct global warming heat pump which has the potential to replace refrigerant-based vapor compression systems.

TRL 3 demonstration of solid-state heat pump that has the potential to provide seasonal COP > 6.0 at full commercialization.

Total Project \$:

- DOE: \$1,093,845 (\$679,393 Phase I)
- Cost Share: \$364,615 (\$226,464 Phase I)

Purpose and Objectives

Problem Statement:

- Current regulations (both US and European) and market needs, are driving us to systems with lower global warming footprint and higher efficiency
- Electrocaloric heat pumping is a refrigerant-free technology that has the prospect of being more efficient, compact and quieter than current vapor compression systems

Target Market and Audience: The target market is residential and small commercial buildings. Residential heating/cooling uses >4.5 quads annually, and small-commercial uses >1 quads for a total of ~5.5 quads.

Impact of Project:

- ≥25% system efficiency improvement and ~2000x direct GWP reduction enabled through:
 - TRL 3 heat pump module demonstration
 - Electrocaloric heat pump with COP > 6.0
 - Elimination of working fluids with global warming potential, and reduction of noise and maintenance costs

Approach

Approach:

- Leverage UTRC micro-electrocalorimetry capability to demonstrate material performance over required operating envelope
- Leverage UTRC electrocaloric modeling tools for module design
- Demonstrate module performance on a test bed
- Analyze system level performance using tested materials and UTRC dynamic modeling tools
- Collaborate with Carrier to assess techno-economic impact

Key Issues:

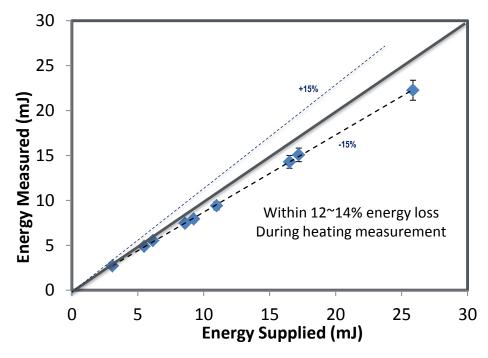
- Scale-up of electrocalorimeter for module scale films
- Module construction and integration

Distinctive Characteristics:

- Novel electrocalorimeter
- Innovative electrocaloric module concept

Progress and Accomplishments

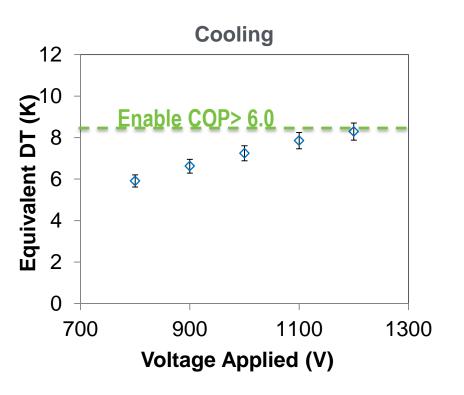
Accomplishments:

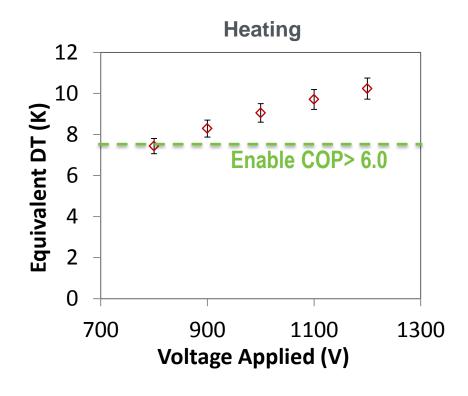

- Project is in early stages of development (start Sept 2015)
- Demonstrated new calorimeter capable of measuring performance over a large temperature envelope 3 - 80 °C and electric fields up to 2000 V

Electrocaloric Calorimeter

Capability of Calorimeter

Parameter	Capability	
Operating temperature range	3 ~ 80 °C	
Operating temperature control	± 0.2 °C	
Electric field capability	< 2000 V	
Calorimeter least count	> 0.2 mJ	





Progress and Accomplishments

Accomplishments:

 Demonstrated > 8 °C temperature lift using micro-electrocalorimetry at room temperature using sub-scale material

Project Integration and Collaboration

Project Integration:

- Carrier is the world's largest manufacturer and distributor of HVAC&R equipment and has a long history of developing successfully commercialized products
- Carrier Corporation commercialized HVAC technologies and concepts developed at UTRC
- UTRC project team is advised by Carrier product and engineering teams to ensure metrics are met during conceptualization and testing phases

Partners, Subcontractors, and Collaborators: None

Communications: Project is in early stages of development

Next Steps and Future Plans

Next Steps and Future Plans:

- Phase I: (Sept. 2015 Aug. 2016)
 Demonstrate material-level electrocalorimeter performance of module-scale films which can enable COP> 6.0.
 - Demonstrate sub-scale material performance at broader temperature range (~10-40 °C)
 - Demonstrate module-scale (~10x bigger) material performance
 - Design electrocaloric heat pump module
 - Phase I Go/No-go review in July 2016
- Phase II: (Sept. 2016 Aug. 2017)
 - Prototype 1 and prototype 2 calorimeter testing
 - System performance analysis
 - Techno-economic assessment

REFERENCE SLIDES

Project Budget

Project Budget: \$1,458K

Variances: none

Cost to Date: \$934,256 (FY15-FY16)

Additional Funding: Cost Share 25% UTRC.

Budget History							
•	15 — FY 2015 ast)	PO15 FY 2016 (current)			ug. 31, 2017 nned)		
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share		
\$12,028	\$4,009	\$688,665	\$229,555	\$393,153	\$131,051		

Project Plan and Schedule

Project Schedule									
Project Start: August, 2015		Completed Work							
Projected End: July, 2017		Active Task (in progress work)							
	•	Milestone/Deliverable (Originally							
	•	Milestone/Deliverable (A				(Act	Actual)		
	FY2015	FY2016			FY2017				
Task	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work									
Q1 Milestone: Sub-scale measurement of ΔTadiabatic									
Q2 Milestone: Electrocalorimeter test rig built									
Q3 Milestone: Sub-scale calorimeter measurement that can provide COP>6.0									
Current/Future Work									
Q4: Module-scale calorimetric measurement									
Q4: Demonstrate COP>6.0 through modeling based on module-film measurements									
Go/No-Go Review					•				
Q6 Milestone: Prototype 1 built							_		
Q7 Milestone: Prototype 1 tested									
Q8 Milestone: Prototype 2 tested									
Q8 Milestone: Techno-economic assessment									