
#### LOW-GWP HVAC SYSTEM WITH ULTRA-SMALL CENTRIFUGAL COMPRESSION

2016 Building Technologies Office Peer Review





Dr. Edward Bennett e-mail: emb@mechsol.com Vice President of Fluids Engineering Mechanical Solutions, Inc.

# **Project Summary**

### Timeline:

Start date: 10/2015

Planned end date: 6/2017

Key Milestones

- 1. Milestone 3.3.1; 1/29/16
- 2. Milestone 2.1.1 ~40% complete; 1/29/16

# Budget:

### Total Project \$ to Date:

- DOE: \$134,406 + \$56,776 (fy: 2016)
- Cost Share: \$52,867

### Total Project \$:

- DOE: \$999,921 (\$362,794 Approved Budget)
- Cost Share: \$251,525 (\$125,886 Approved Budget)

### Key Partners:

| Lennox<br>International, Inc.   |  |
|---------------------------------|--|
| TURBOCAM<br>International, Inc. |  |
|                                 |  |
|                                 |  |
|                                 |  |

### Project Outcome:

Advance unrealized design potential of small centrifugal vapor compression in conjunction with advanced heat exchanger design to reduce environmental burdens with the use of low-GWP refrigerants while cost-effectively maintaining performance.



# **Purpose and Objectives**

**Problem Statement**: Advance unrealized design potential of small centrifugal vapor compression in conjunction with advanced heat exchanger design to reduce environmental burdens with the use of low-GWP refrigerants while cost-effectively maintaining performance.

**Target Market and Audience**: This project is targeted toward residential and commercial air conditioning. The market is approximately 3 quads of cooling for both residential and commercial. The audience is new units selected for low-GWP refrigerant capability.

#### Impact of Project:

- <u>Project Output</u> Technical performance goals met, technical and manufacturing pathway established, and prototype for efficient use of low-GWP refrigerants in HVAC applications
- <u>Near-term outcomes</u>: Private sector aware of technology through investment/ collaboration, begin additional investment to refine technology/reduce cost
- <u>Intermediate outcomes</u>: Continued partnership with private sector system and component manufacturers to refine technology and reduce cost, introduce to market
- Long-term outcomes: Enable cost effective and energy efficient shift to low-GWP refrigerants in HVAC industry



# Approach

**Approach**: Develop conceptual model in collaboration with system vendor to determine efficiencies, system design and manufactured cost. Refine design and build/test prototype to validate solution.

### Key Issues:

- 1. <u>Efficiency</u> Low-GWP refrigerants are new and untested in this application. Early compressor studies are based on isentropic efficiency, but system efficiency results required.
- System integration Small centrifugal is a departure from current HVAC applications in this size range. Need good integration into system, including operating methodology, materials compatibility, etc. Heat exchanger is an integral component.
- 3. <u>Cost</u> Technology will need to be cost effective to be adopted by industry and subsequently consumers.

**Distinctive Characteristics**: Determine system efficiency and cost estimates early in program



# **Progress and Accomplishments**

#### Accomplishments:

- Study of various low-GWP refrigerants performed and downselected
- Conceptual aero design completed
- Preliminary heat exchanger design completed, parts being sourced
- Conceptual bearing and motor design completed

#### Market Impact:

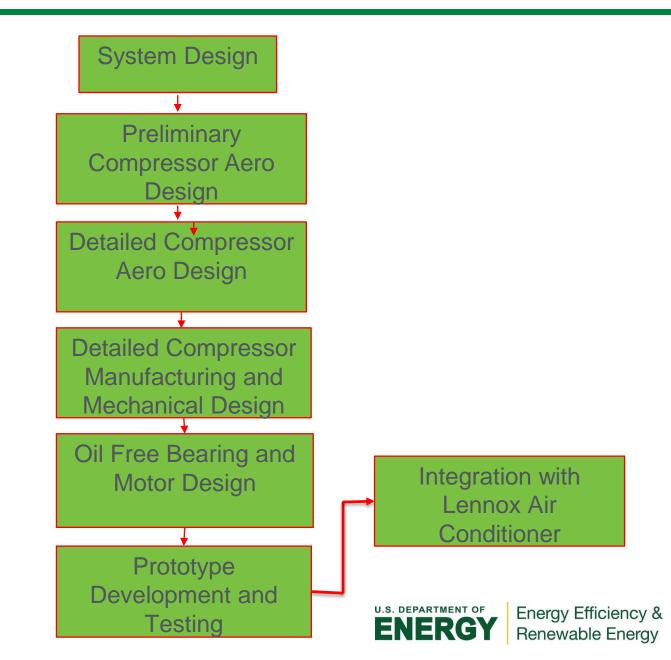
- Presenting findings to date at Purdue Compressor Conference Aug 2016
- Still early in project (Budget Period 1)

#### Awards/Recognition:

- None to date

#### Lessons Learned:

- Business Development negotiations with partners can be very time consuming




# **Project Objectives**

- Design and development of an ultra-small, efficient, maintenance-free, oil-free, inexpensive centrifugal compressor, including aero components, rotor-bearing system, inverter and motor for a 5-ton air conditioning system
- Optimization for partial load efficiency, without sacrificing peak load performance
- Design for manufacturability and cost
- Validation and system integration of a high effectiveness heat transfer system, engineered for a very low-GWP refrigerant, e.g., microchannel heat exchanger
- Analysis of:
  - very low-GWP refrigerant compatibility with system materials
  - throughput benefits of centrifugal compression of lower density, very low-GWP's
- Quantification of beneficial lifecycle impacts of centrifugal technology, including installation, diagnosing, and servicing of systems
- Optimization for unitary "drop in" replacement, including flammability and safety risks, suction line pressure drop, and performance relative to outdoor temperature
- Testing of prototype system



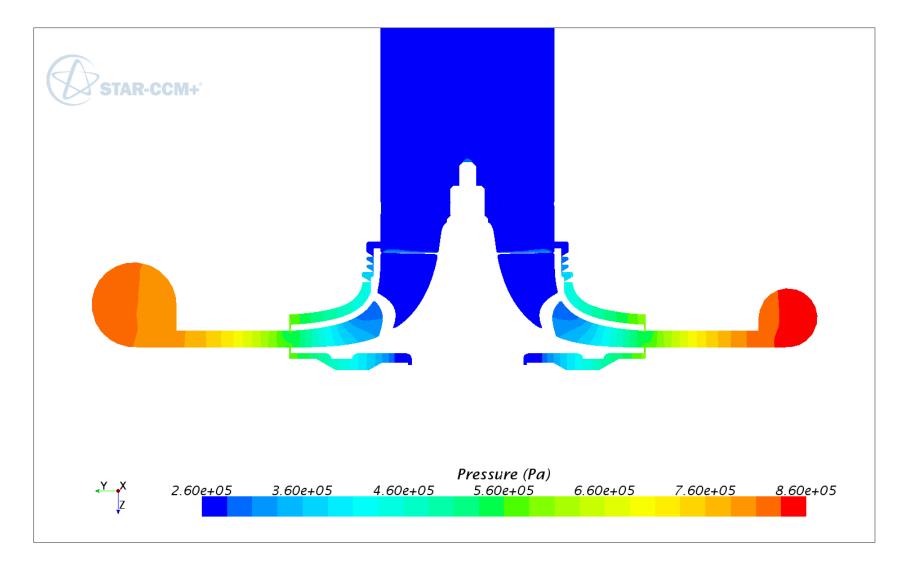
## **Design and Prototype Development Flowchart**



### • Conducted by Lennox

- System design consisting of all components(Compressor, heat exchanger, etc.), using Cycle\_D code
- Multiple refrigerants examined
  - Several HFO blends were evaluated




- Conducted using PCA Vista Design Code and CFturbo
- Both codes employed modified Redlich Kwong and Peng Robinson Equation of State(EOS) to simulate Refrigerant PVT behavior



- Upon Completion of the preliminary design, a detailed 3-dimensional geometry of the centrifugal compressor was made using specific turbomachinery design software(ANSYS and CFturbo)
- The flowpath was analyzed using the real gas CFD code, STAR-CCM+
- A secondary flowpath was added to the system using the NX and Pro-Engineer CAD products to add fidelity to the analyses
- Complete analyses were conducted for subject refrigerants
- The analyses were completed at the rated condition, as well as a appropriate turndown condition to ensure proper off-design performance
- The effect of the foil bearings were considered in these analyses. A supply flow was taken from the impeller. This flow will feed the bearings, and provide motor cooling flow.



## **Compressor Coupled CFD Analysis**





Energy Efficiency & Renewable Energy

#### **Project Integration**:

MSI and Lennox are coordinating system design parameters to guide development. Lennox participates in requirements definition, design reviews, and parallel development.

### Partners, Subcontractors, and Collaborators:

Project partner – Lennox International, Inc.

#### **Communications**:

Presenting findings to date at Purdue Compressor Conference Aug 2016



# **Project Plan and Schedule**

|   |        |                                  | Task Title or Milestone/Deliverable                                                | Performer                     |                     | Task Comple        |        |                 | Progress Notes                                                                                       |
|---|--------|----------------------------------|------------------------------------------------------------------------------------|-------------------------------|---------------------|--------------------|--------|-----------------|------------------------------------------------------------------------------------------------------|
|   | Task # | Milestone = M<br>Deliverable = D | Description                                                                        | (if different from recipient) | Original<br>Planned | Revised<br>Planned | Actual | % Com-<br>plete |                                                                                                      |
| 1 | 1      | т                                | Program Management - Ongoing                                                       | Principal<br>Engineer I       | 9/30/2017           | 10/12/2017         |        | 20%             | Project Schedule has been shifte<br>by 2 months due to late kickoff<br>meeting                       |
| 1 | 2      | т                                | Requirements Definition                                                            | Vice President                | 6/31/17             |                    |        | 60%             |                                                                                                      |
| 1 | 2      | м                                | First version of Requirements Document<br>complete                                 | Vice President                | 1/29/2016           | 2/28/2016          |        | 40%             | First Version Of Requirements<br>Document To Be Finalized At<br>Concept Design Review                |
| 1 | 3      | т                                | Materials Comaptibility Investigation                                              | Lennox                        | 4/30/2016           |                    |        | 70%             |                                                                                                      |
| 1 | 3      | М                                | Preliminary materials selection complete                                           | Lennox                        | 1/29/2016           |                    |        | 100%            | Refrigerant Selected                                                                                 |
| 1 | 3      | М                                | Final materials selection                                                          | Lennox                        | 7/30/2016           |                    |        | 20%             |                                                                                                      |
| 1 | 4      | т                                | Market Transformation                                                              |                               | 6/30/2016           |                    |        | 10%             | Subtask 4.2 (Identified<br>TURBOCAM)<br>Conducting In Concert With<br>Production Cost Estimate Effor |
| 1 | 4      | М                                | Obtain letter of interest from potential<br>manufacturing partners                 |                               | 4/30/2016           |                    |        |                 |                                                                                                      |
| 1 | 5      | т                                | Conceptual Design                                                                  | Vice President                | 2/28/2016           |                    |        | 60%             |                                                                                                      |
| 1 | 5      | М                                | Aerodynamic Design                                                                 |                               | 1/15/2016           |                    |        | 100%            | Per DOE/MSI Aerodynamic Desi<br>Review (1/19/2016)                                                   |
| 1 | 5      | М                                | Motor Type Selected                                                                |                               | 3/1/2016            |                    |        | 5%              |                                                                                                      |
| 1 | 5      | М                                | Economical bearing solution identified                                             |                               | 2/28/2016           |                    |        | 10%             |                                                                                                      |
| 1 | 6      | т                                | Preliminary & Critical Design                                                      | Vice President                | 8/30/2016           |                    |        |                 |                                                                                                      |
| 1 | 6      | М                                | Final integrated compressor/motor design<br>efficiency meets 78%                   |                               | 8/30/2016           |                    |        |                 |                                                                                                      |
| 1 | 6      | М                                | Refrigerant selection complete                                                     |                               | 8/30/2016           |                    |        |                 |                                                                                                      |
| 1 |        | М                                | Go/No-Go Decision Point (Continuation<br>Report)                                   |                               | 6/30/2016           |                    |        |                 |                                                                                                      |
| 1 | 7      | т                                | Prototype Procurement and Assembly                                                 | Principal<br>Engineer I       | 3/31/2017           |                    |        |                 |                                                                                                      |
| 1 | 7      | М                                | LCCP improvement of at least 38% over typical A/C unit                             |                               | 9/30/2016           |                    |        |                 |                                                                                                      |
| 1 | 7      | М                                | Checkout test successful                                                           |                               | 3/31/2017           |                    |        |                 |                                                                                                      |
| 1 | 8      | т                                | Heat Exchanger Design                                                              | Lennox                        | 12/31/201<br>6      |                    |        |                 |                                                                                                      |
| 1 | 8      | М                                | Heat exchanger types for evaluation selected                                       | Lennox                        | 11/30/201<br>5      |                    |        |                 |                                                                                                      |
| 1 | 8      | М                                | Achieve condenser HX cost parity vs.<br>baseline R-410A condenser                  | Lennox                        | 12/31/201<br>6      |                    |        |                 |                                                                                                      |
| 1 | 9      | т                                | Procure Heat Exchanger Prototype                                                   | Lennox                        | 1/30/2017           |                    |        |                 |                                                                                                      |
| 1 | 10     | т                                | Integrated compressor/motor and a/c system tests                                   | Principal<br>Engineer I       | 4/30/2017           |                    |        |                 |                                                                                                      |
| 1 | 10     | М                                | 100% speed test for compressor                                                     |                               | 4/30/2017           |                    |        |                 |                                                                                                      |
| 1 | 11     | т                                |                                                                                    | Vice President                | 6/31/17             |                    |        |                 | U.S. D                                                                                               |
| 1 | 11     | м                                | Final manufactured component cost still<br>below \$275 per unit (Go/No-Go Meeting) |                               | 6/31/17             |                    |        |                 | FN                                                                                                   |

**Project Dates**:

- Start: 10/2015 •
- End: 6/2017 • **Current and Future** Work
- See Schedule



# **Project Budget**

#### **Project Budget**:

- DOE: \$999,921 (\$362,794 Approved Budget)
- Cost Share: \$251,525 (\$125,886 Approved Budget) Lennox International, Inc **Variances**:
- Currently no variances specific to project

#### Cost to Date:

- DOE: \$134,406 (CY 2015) + \$56,776 (Q1 CY 2016 End Of Q1 CY 2016)
- Cost Share: \$52,867 (CY 2015)

#### Additional Funding:

• Strategic Partner (Lennox International, Inc.) To Dedicate \$251K Cost Share

| Budget History             |            |              |                                |                               |            |  |  |  |  |  |
|----------------------------|------------|--------------|--------------------------------|-------------------------------|------------|--|--|--|--|--|
| 10/2015– CY 2015<br>(past) |            | (Q1 CY 2016- | 2016<br>- through end<br>2016) | FY 2017 – 6/2017<br>(planned) |            |  |  |  |  |  |
| DOE                        | Cost-share | DOE          | Cost-share                     | DOE                           | Cost-share |  |  |  |  |  |
| \$134,406                  | \$52,867   | \$240,375    | \$71,517                       | \$625,140                     | \$127,141  |  |  |  |  |  |



## **Next Steps and Future Plans**

### Next Steps and Future Plans:

- Consider 2-stage compressor
  - Longer lifecycle
  - More refrigerant options
  - Applicable to heat pumps, including cold climate
- Need to investigate higher resolution 3-d printing for various materials

