
# Miniaturized Air-to-Refrigerant Heat Exchangers

2016 Building Technologies Office Peer Review





Reinhard Radermacher raderm@umd.edu
University of Maryland College Park

### **Project Summary**

#### Timeline:

Start date: 3/1/2013

Original end date: 2/29/2016 Revised end date: 10/30/2016

#### **Key Milestones**

1. Design optimization, 3/30/14

2. Fabrication/testing, 1kW prototype, 6/30/2015

3. Fabrication/testing, 10kW prototype, 1/30/2016

#### **Budget**:

Total Budget: \$1500K

Total UMD: \$1050K

Total DOE \$ to date for UMD: \$1050K

#### **Target Market/Audience**:

Residential and commercial heat pump systems with various capacity scales.

Condenser as first choice of application

#### **Key Partners**:

Oak Ridge National

Laboratory

**Burr Oak Tool** 

Heat Transfer Technologies

International Copper

Association

Luvata

Wieland













#### **Project Goal**:

**Purpose**: Develop next generation heat exchangers for heat pumps and air-conditioners

**Target Performance**: Miniaturized air-to-refrigerant heat exchangers with at least

- 20% lower volume
- 20% less material
- 20% higher performance

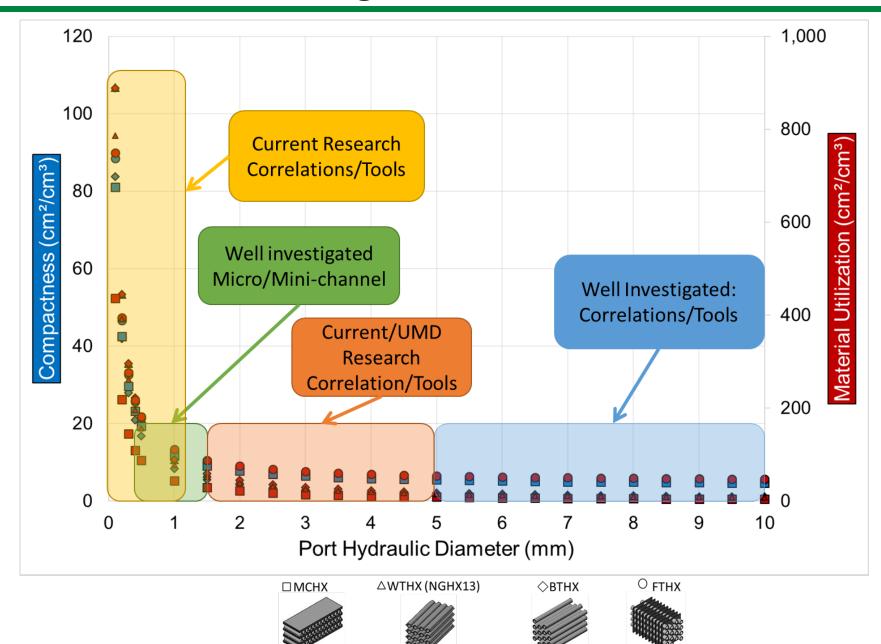
**Target Market**: To be in production within five years



### **Purpose and Objectives**

**Problem Statement**: Develop miniaturized air-to-refrigerant heat exchangers that are 20% better, in size, weight and performance, than current designs **AND** In production within 5 Years

#### **Target Market and Audience:**


- Residential and commercial heat pumps and air-conditioners
- US Shipment of residential air-source equipment in 2011: 5.5 Million units
- US EIA 2009 Energy Consumption: 41.5% for space heating, 6.2% for AC
- Proposed heat exchanger technology will readily compete with current condenser designs for AC systems (3.7 M).

#### **Impact of Project:**

- Project deliverables include analyses tools and heat transfer correlations
- Heat exchangers (1 kW and 10 kW) that are at-least 20% better (size, weight and performance) than current designs, based on measured performance; a minimum of 3 prototypes to be fabricated and tested
- Manufacturing guidelines to facilitate production within 5 years



### **Future of Heat Exchangers**



### **Approach**

- Developed a comprehensive multi-scale modeling and optimization approach for design optimization of novel heat exchangers
  - Parallel Parameterized CFD
  - Approximation Assisted Optimization
- Build a test facility for air side performance measurement of heat exchangers
- Design, optimize and test 1 kW and 10 kW air-to-water and air-torefrigerant heat exchangers
- Investigate conventional and additive manufacturing techniques
- Analyze and test system level performance of novel heat exchangers
  - Evaporator and condenser of a system based on same design



#### Approach: Key Issues

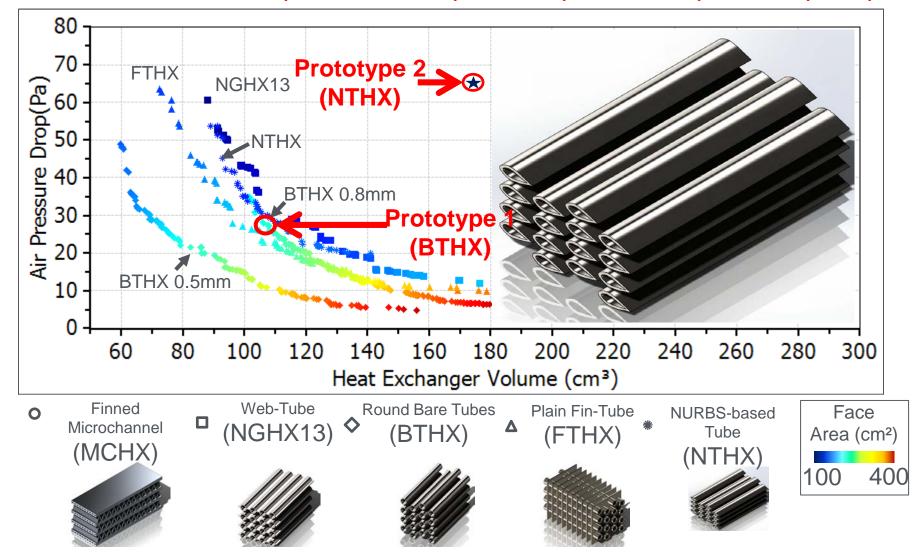
- Lack of basic heat transfer and fluid flow data for design and analyses of air-to-refrigerant heat exchangers with small flow channels
- Availability for small diameter tubes and manufacturing quality control
- Joining/manufacturing challenges
- Face area constraints
- Fouling and flow mal-distribution
- Wetting
- Noise and vibrations



### **Approach: Distinctive Characteristics**

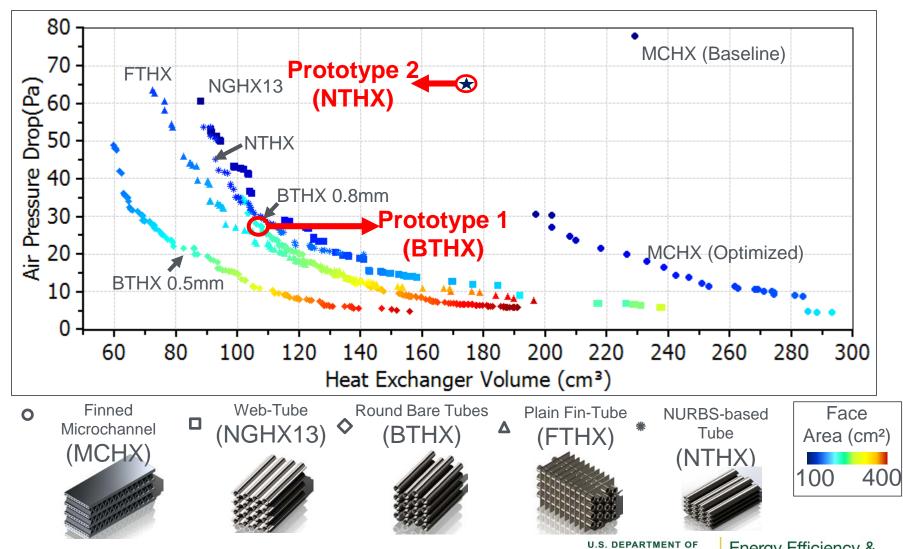
- Developed a comprehensive multi-scale modeling and optimization approach for design optimization of novel heat exchangers
  - Allows for rapid and automated CFD evaluation of geometries with shape and topology change
  - More than 90% reduction in engineering and computation time
- Focus on small hydraulic diameter flow channels
  - Bridging the research gaps
  - Heat transfer, pressure drop correlations and design tools
- Prototype fabrication and testing is in progress, with target production within 5 years
  - Initial tests show, <10% deviation compared to predicted values</li>
- 20% size and weight reduction
  - Retrofit applications, limited load carrying capacity of roofs
  - Potential savings in logistics costs




### **Progress and Accomplishments**

- Analyzed 15+ heat exchanger geometries
- Developed a new methodology for optimizing tube shapes no longer constrained by circular/rectangular tubes
- Fabricated and tested three 1kW prototypes
  - Measured data for dry tests agree within 10% of predicted performance for heat transfer and 20% for pressure drop
  - Wet tests show significant pressure drop penalty
- Fabricated and tested one 10kW radiator
  - Challenges with tube blockage
- Work in progress
  - Fabrication of 3TR evaporator and condenser
  - System-test facility is developed, equipment donated by sponsors of UMD-CEEE Consortium

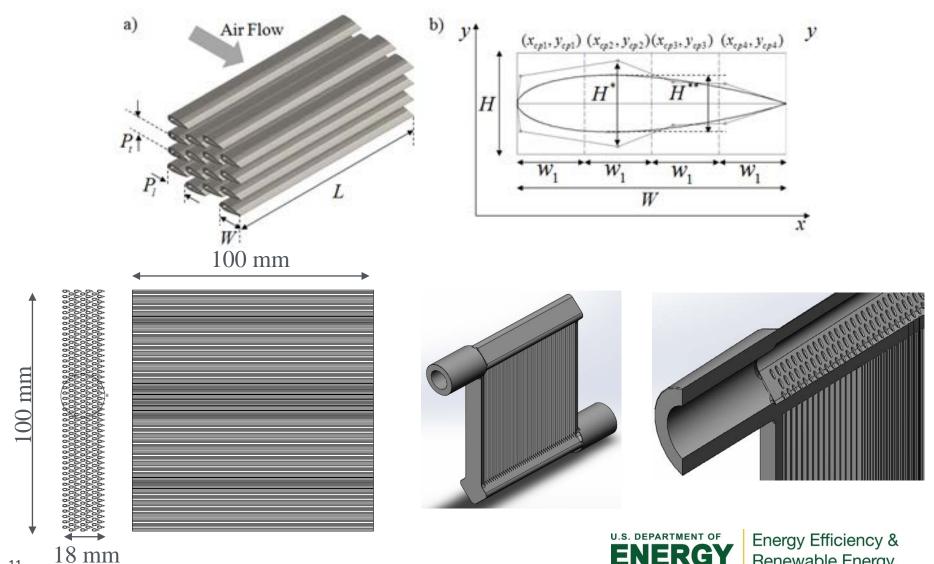



### **Accomplishments**

#### Fixed flow rates; $\Delta T=50K(MCHX / NGHX13)$ ; $\Delta T=42K (BTHX / FTHX)$ ; $\Delta T=40K (NTHX)$

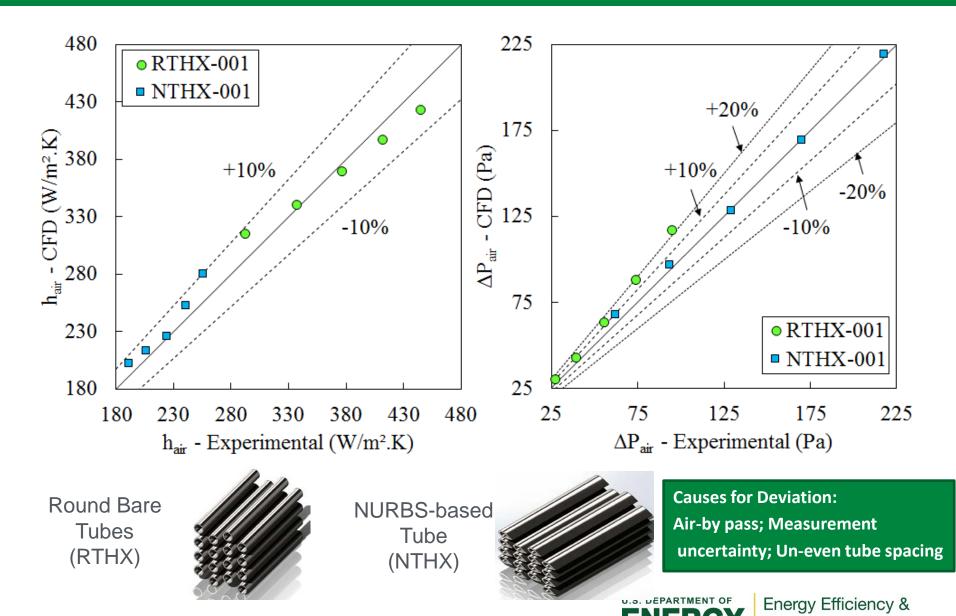


### **Accomplishments (non-Animated)**


Fixed flow rates;  $\Delta T=50K(MCHX / NGHX13)$ ;  $\Delta T=42K (BTHX / FTHX)$ ;  $\Delta T=40K (NTHX)$ 



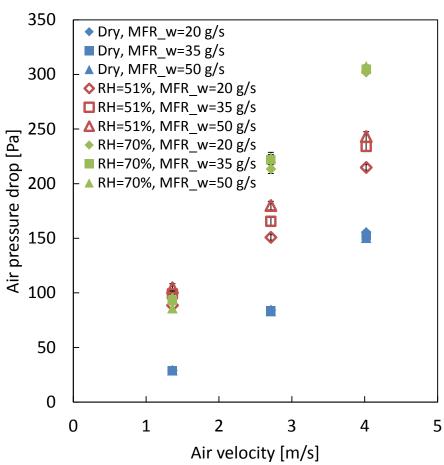
### **Progress and Accomplishments**


11

Novel multi-scale approach for tube shape optimization

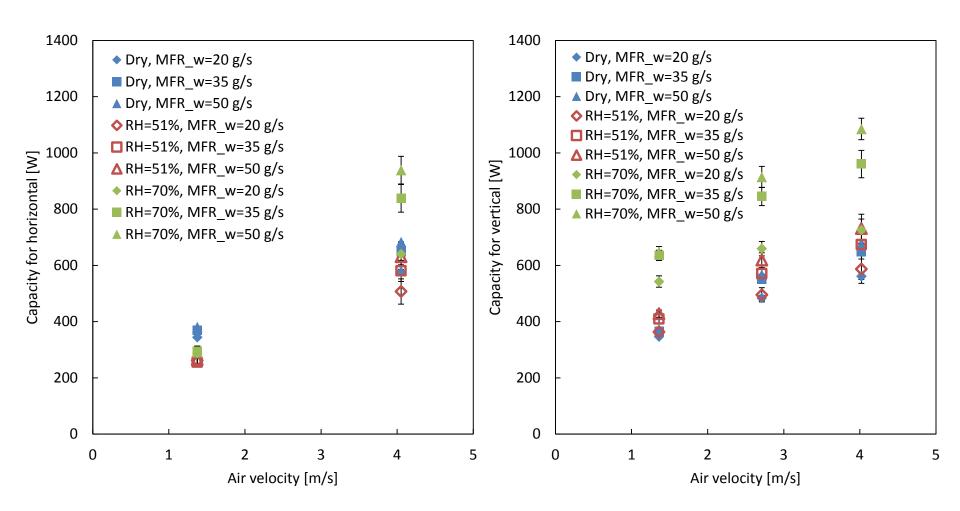



Renewable Energy


# **Accomplishments:**



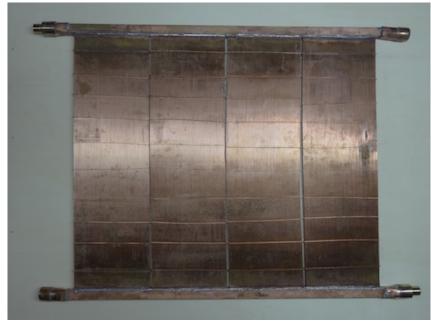
Renewable Energy


### **Accomplishments: Wet Tests (Vertical Orientation)**



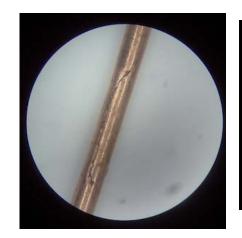


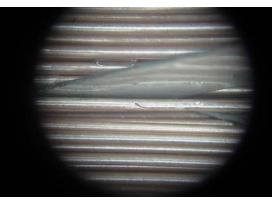




### Accomplishments: Wet Tests, Horizontal vs. Vertical






### **Accomplishments: 10kW Radiator Fabrication**





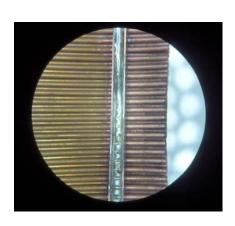

1kW: 484 Tubes, 140mm x 150mm

10kW: 2280 Tubes, 444mm x 580mm

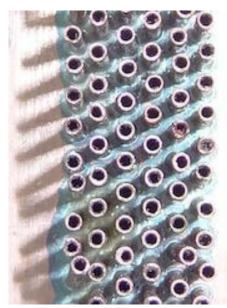




#### **Tube Defects**


Significant tubes had fractures and leaks

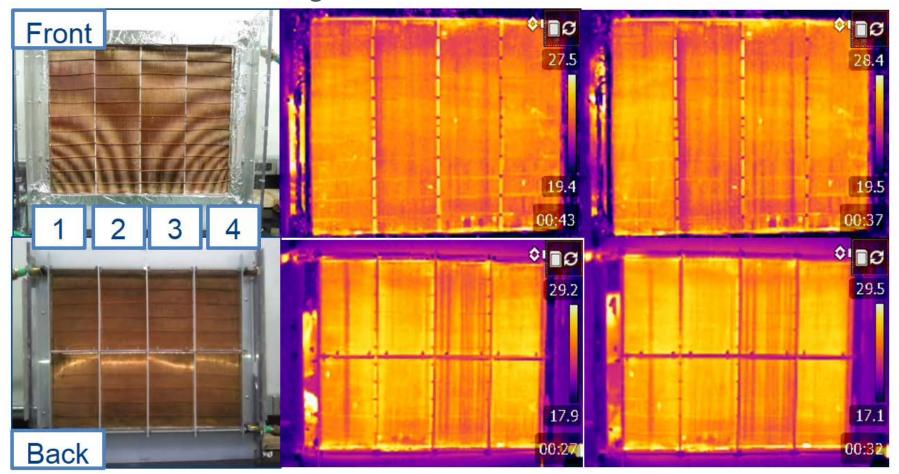
Had to re-order entire batch of tubes from a different vendor




### **Accomplishments: Process Improvement**

- Separate soldering process improves control and reduces complexity; New method – solder tube to header separately
- Header to manifold soldering without an oven provides cleaner appearance and allows any size HX to be made









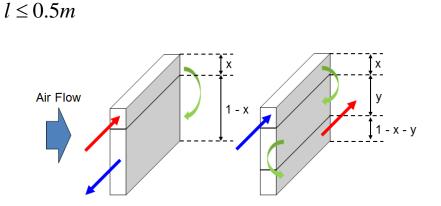

#### **Accomplishments: 10kW Radiator Tests**

- ~25% tubes blocked in end rows
- Needs further investigation





### **Lessons Learned from Fabrication and Testing**


- Quality control during manufacturing of small diameter tubes is critical
- Heat exchanger core needs to be flushed/cleaned before final manifold soldering; conduct single manifold flow tests
  - Material reactions could also cause blockages
- Uncertainty in latent heat load dominated by the uncertainty in humidity measurement. ASHRAE standard requirements do not guarantee 5% uncertainty for all test conditions
- Under dry conditions, the orientation of heat exchanger has no measurable impact on capacity. Under wet conditions, horizontal orientation has lower capacity than vertical orientation.
- Significant bridging effect of condensate water for bare tube heat exchangers is observed. The pressure drop penalty under wet conditions is much higher than traditional heat exchangers.
  - Need to use coatings.

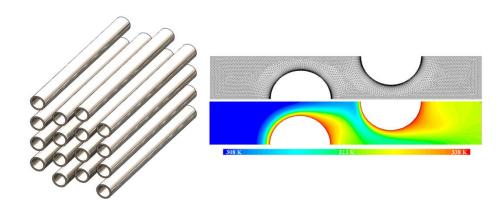


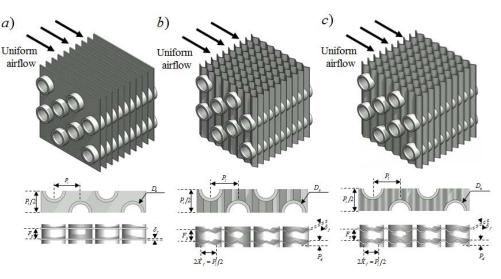

### **3TR Evaporator and Condenser Designs**

- Geometries: Round bare tubes, inline and staggered
- 3ton heat pump unit

**Indoor Unit Outdoor Unit** (Cooling) (Cooling)  $\min f_1 = \Delta p_{air}$  $\min f_1 = \Delta p_{air}$  $\min f_2 = V_{HX}$  $\min f_2 = V_{HX}$ s.t. s.t.  $13.0 \le \mathcal{Q} \le 13.5 kW$  $10.5 \le \mathcal{O} \le 11.0kW$  $\Delta p_{air} \le 0.8 \cdot \Delta p_{air\_baseline}$  $\Delta p_{air} \le 0.8 \cdot \Delta p_{air\_baseline}$  $V_{HX} \leq 0.5 \cdot V_{baseline}$  $V_{HX} \leq 0.5 \cdot V_{baseline}$  $u_{air} \le 1.2 \text{ m/s}$  $0.2 \le AR \le 1.0$ 







Opt1 and Opt2 are two optimized designs



### **Accomplishments: Design Tools for Industry**

 Air-side heat transfer and pressure drop correlations





#### Round Bare Tube HX

| Design<br>Variable                     | unit | Bare<br>Tubes | Bare<br>Tubes | Bare<br>Tubes |  |  |
|----------------------------------------|------|---------------|---------------|---------------|--|--|
| $D_{o}$                                | mm   | 2.0 to 5.0    | 0.5 to 2.0    | 0.5 to 2.0    |  |  |
| P <sub>t</sub> ratio (D <sub>o</sub> ) | -    | 1.25 to 4.0   | 1.2 to 4.0    | 1.2 to 4.0    |  |  |
| P <sub>I</sub> ratio (D <sub>o</sub> ) | -    | 1.25 to 4.0   | 1.2 to 4.0    | 1.2 to 4.0    |  |  |
| Nt                                     | -    | 2 to 20       | 2 to 40       | 2 to 40       |  |  |
| Air face velocity                      | m/s  | 0.5 to 7.0    | 0.5 to 7.0    | 0.5 to 7.0    |  |  |
| Arrangement                            | -    | Staggered     | Staggered     | Inline        |  |  |

#### Plain Fin Tube HX

| Design Variable                        | unit | Plain fin-and-tube |
|----------------------------------------|------|--------------------|
| $D_o$                                  | mm   | 2.0 to 5.0         |
| P <sub>t</sub> ratio (D <sub>o</sub> ) | -    | 1.5 to 3.0         |
| P <sub>I</sub> ratio (D <sub>o</sub> ) | -    | 1.5 to 3.0         |
| Nr                                     | -    | 2 to 10            |
| FPI                                    | in⁻¹ | 8 to 24            |
| Air face velocity                      | m/s  | 0.5 to 7.0         |
| Fin thickness                          | mm   | 0.115 (fixed)      |

#### Wavy Fin Tube HX

| Design Variable | unit | Wavy fin-and-tube                      |
|-----------------|------|----------------------------------------|
| $D_{o}$         | mm   | 2.0 - 5.0                              |
| $P_{l}$         | mm   | 1.5D <sub>o</sub> - 4.0D <sub>o</sub>  |
| $P_t$           | mm   | 1.5D <sub>o</sub> - 4.0D <sub>o</sub>  |
| $W_{l}$         | mm   | 0.5D <sub>o</sub> - 1.25D <sub>o</sub> |
| $P_d$           | mm   | 0.05W <sub>I</sub> - 0.2W <sub>I</sub> |
| $\delta_{t}$    | mm   | 0.05 - 0.25                            |
| FPI             | in⁻¹ | 5 - 50                                 |
| $N_{t}$         | -    | 2 – 10                                 |
| u               | m/s  | 0.5 - 7.5                              |



Energy Efficiency & Renewable Energy

### **Project Integration and Collaboration**

#### **Project Integration**

- Collaboration with key project partners to identify and solve manufacturing and deployment challenges
- Collaboration with ORNL for performance testing and advanced manufacturing
- First-hand feedback from industry partners of UMD Consortium

#### Partners, Subcontractors, and Collaborators

- ORNL: Subcontractor; design, advanced manufacturing and testing
  - Omar Abdelaziz: Group Leader, PI; Patrick Geoghegan: Scientist
- Luvata: Industry partner; manufacturing, system integration and marketing
  - Mike Heidenreich: VP of Product Engg; Russ Cude: Director of Engg., Americans; Randy Weaver: R&D Engineer
- ICA / Heat Transfer Technologies: Industry partner; heat exchanger manufacturing process development
  - Yoram Shabtay: President; John Black: VP of Market Development
- Wieland: Industry Partner; tube manufacturer
  - Steffen Rieger, Technical Marketing Manager
- Burr Oak Tool Inc.: Specializing in machines, tools and services for HX mfg. Roger
   Tetzloff, Innovations Manager

Renewable Energy

#### **Project Communications**

#### **Progress Review Meetings:**

- Kick-off Meeting & Brainstorming Workshop, 22-Apr-2013, University of Maryland
- Semi-annual in-person progress review meetings (Mar and Sep), every year

**IP:** Invention records and provisional patent application in progress

# Total Publications: 2014- 4, 2015- 3, 2016- 1, and 6 drafting Selected Publications

- 1. Bacellar, D., Aute, V., Radermacher, R., CFD-Based Correlations, with Experimental Verification, for Air Side Performance of Round Finless Tube Heat Exchangers with Diameters below 2.0mm, Intl. J. of Heat and Mass Transfer, Accepted Manuscript.
- 2. Bacellar, D., Aute, V., Radermacher, R., A Method for Air-To-Refrigerant Heat Exchanger Multi-Scale Analysis and Optimization with Tube Shape Parameterization, 24<sup>th</sup> IIR International Congress of Refrigeration, August 16 22, 2015 Yokohama, Japan.
- 3. Bacellar, D., Aute, V., Radermacher, R., **CFD-Based Correlation Development for Air Side Performance on Finned Tube Heat Exchangers with Wavy Fins and Small Tube Diameters**, 24<sup>th</sup> IIR International Congress of Refrigeration, August 16 22, 2015 Yokohama, Japan.



### **Next Steps and Future Plans**

- 1kW Prototype Wet Tests
  - Investigate the effect of coatings
- 10kW Prototype Tests
  - Investigate cause of tube blockages and improve fabrication process
- Fabricate evaporators and condensers for 3 Ton system (in-progress)
- Conduct structural and noise analysis on prototype designs
- Test evaporators and condensers in wind tunnel
- System Testing
  - Set up system test facility (complete)
  - Test evaporators and condensers as a part of complete system
- Develop and disseminate tools for heat exchanger analyses (inprogress)
- Develop and disseminate manufacturing guidelines and lessons learned
   (9/30/2016)

Renewable Energy

# REFERENCE SLIDES



### **Project Budget**

**Project Budget**: DOE Total \$1050K, FY13-17 (3/1/2013 to 2/29/2016)

Variances: No change in overall budget; Higher spending in Year-2, due to

prototype fabrication and test facility setup

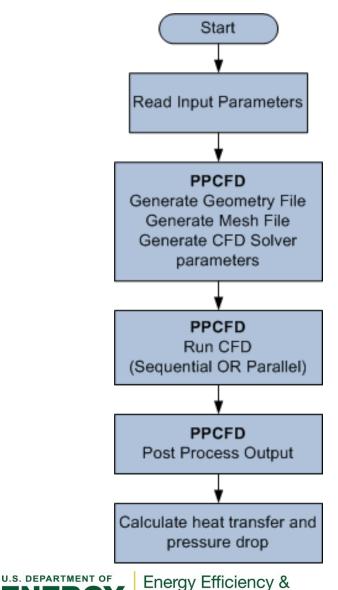
Cost to Date: \$1050K; Entire budget is expended.

Additional Funding: No additional funding for DOE is expected. Various in-kind

contribution from industry partners.

| Budget History            |            |        |                 |                     |            |  |  |  |  |  |  |
|---------------------------|------------|--------|-----------------|---------------------|------------|--|--|--|--|--|--|
| FY2013 — FY2014<br>(past) |            |        | 015<br>us Year) | FY2016<br>(Current) |            |  |  |  |  |  |  |
| DOE                       | Cost-share | DOE    | Cost-share      | DOE                 | Cost-share |  |  |  |  |  |  |
| \$751                     | NA         | \$130K | NA              | \$169K              | NA         |  |  |  |  |  |  |




# **Project Plan and Schedule**

| Project Schedule                                               |                                            |              |              |              |              |              |              |              |              |              |              |              |              |                                              |  |  |  |
|----------------------------------------------------------------|--------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------------------------------------|--|--|--|
| Project Start: 04/15/2013                                      | Completed Work                             |              |              |              |              |              |              |              |              |              |              |              |              |                                              |  |  |  |
| Projected End: 10/30/2016                                      | Active Task (in progress work)             |              |              |              |              |              |              |              |              |              |              |              |              |                                              |  |  |  |
|                                                                | Milestone/Deliverable (Originally Planned) |              |              |              |              |              |              |              |              |              |              |              |              |                                              |  |  |  |
|                                                                | Milestone/Deliverable (Actual)             |              |              |              |              |              |              |              |              |              |              |              |              |                                              |  |  |  |
|                                                                |                                            |              |              |              |              |              |              |              | FY2          | FY2016       |              |              |              |                                              |  |  |  |
| Task                                                           | Q1 (Apr-Jun)                               | Q2 (Jul-Sep) | Q3 (Oct-Dec) | Q4 (Jan-Mar) | Q1 (Apr-Jun) | Q2 (Jul-Sep) | Q3 (Oct-Dec) | Q4 (Jan-Mar) | Q1 (Apr-Jun) | Q2 (Jul-Sep) | Q3 (Oct-Dec) | Q4 (Jan-Mar) | Q1 (Apr-Jun) | Q1 (Apr-Jun)<br>Q2 (Jul-Sep)<br>Q3 (Oct-Dec) |  |  |  |
| Past Work                                                      |                                            |              |              |              |              |              |              |              |              |              |              |              |              |                                              |  |  |  |
| Finalize best designs (via optimization) for various materials |                                            |              |              |              |              |              |              |              |              |              |              |              |              |                                              |  |  |  |
| Manufacture sample tubes, headers and investigate joining      |                                            |              |              |              |              |              |              |              |              |              |              |              |              |                                              |  |  |  |
| options                                                        |                                            |              |              |              |              |              |              |              |              |              |              |              |              |                                              |  |  |  |
| Select most promising materials and techniques                 |                                            |              |              |              |              |              |              |              |              |              |              |              |              |                                              |  |  |  |
| Identify preferred design and manufacturing methods            |                                            |              |              |              |              |              |              |              |              |              |              |              |              |                                              |  |  |  |
| Design and fabricate various 1 kW options                      |                                            |              |              |              |              |              |              |              |              |              |              |              |              |                                              |  |  |  |
| Test various 1 kW options                                      |                                            |              |              |              |              |              |              |              |              |              |              |              |              |                                              |  |  |  |
| Decide on material and manufacturing approach for 10kW         |                                            |              |              |              |              |              |              |              |              |              |              |              |              |                                              |  |  |  |
| design                                                         |                                            |              |              |              |              |              |              |              |              |              |              |              |              |                                              |  |  |  |
| 1 kW Heat exchanger successfully tested                        |                                            |              |              |              |              |              |              |              |              |              |              |              |              |                                              |  |  |  |
| Current/Future Work                                            |                                            |              |              |              |              |              |              |              |              |              |              |              |              |                                              |  |  |  |
| Design and fabricate 10 kW prototypes (3 HX)                   |                                            |              |              |              |              |              |              |              |              |              |              |              |              |                                              |  |  |  |
| Test 10 kW prototype HX in Wind Tunnel                         |                                            |              |              |              |              |              |              |              |              |              |              |              |              |                                              |  |  |  |
| Test 10kW prototypes in System                                 |                                            |              |              |              |              |              |              |              |              |              |              |              |              |                                              |  |  |  |
| Reporting                                                      |                                            |              |              |              |              |              |              |              |              |              |              |              |              |                                              |  |  |  |
| Closure                                                        |                                            |              |              |              |              |              |              |              |              |              |              |              |              |                                              |  |  |  |



#### **PPCFD**

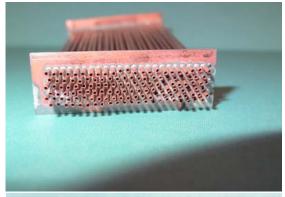
- Parallel Parameterized CFD (PPCFD)
- Methodology to
  - Generate geometries
  - Generate mesh files
  - Generate & execute CFD runs file
  - Post process output
- Advantages
  - Fast evaluation of parameterized geometries, allows topology change
  - Applicable to most domains
  - Significant reduction in engineering time



# **Geometries Analyzed**

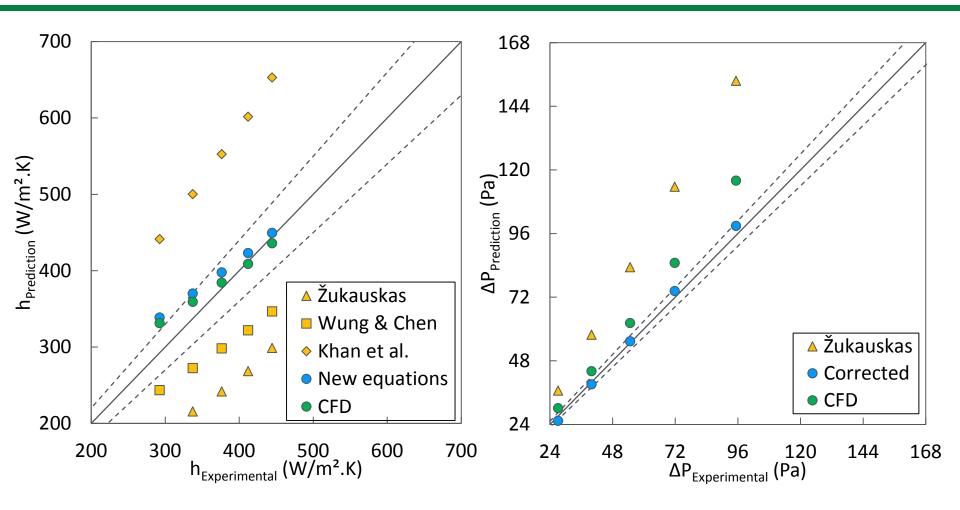
| Geo | metry             |    | Design   | & Optim | ization |     | Prototyping, Experimen<br>Testing & Development<br>Design Tools |            |      |
|-----|-------------------|----|----------|---------|---------|-----|-----------------------------------------------------------------|------------|------|
| HX  | ARR               | IA | PPCFD    | UA      | MM      | AAO | PT                                                              | VAL        | CORR |
| BT  | Inline            | ✓  | ✓        | ✓       | ✓       | ✓   | ✓                                                               | <b>√</b> * | -    |
| BT  | Staggered         | ✓  | ✓        | ✓       | ✓       | ✓   | ✓                                                               | X          | ✓    |
| BT  | Chevron           | ✓  | -        | -       | -       | -   | -                                                               | -          | -    |
| FM  | Slanted           | ✓  | ✓        | ✓       | ✓       | ✓   | -                                                               | -          | -    |
| FM  | Multiple<br>Banks | ✓  | <b>✓</b> | ✓       | ✓       | ✓   | -                                                               | -          | -    |
| FT  | Staggered         | ✓  | ✓        | ✓       | ✓       | ✓   | -                                                               | -          | X    |
| FT  | Inline            | ✓  | -        | -       | -       | -   | -                                                               | -          | -    |
| MBT | Staggered         | ✓  | ✓        |         |         |     |                                                                 |            | -    |
| MBW | Staggered         | ✓  |          |         |         |     |                                                                 |            | -    |
| NT  | Staggered         | ✓  | ✓        |         |         |     | X                                                               |            | -    |
| VG  | N/A               | X  |          |         |         |     |                                                                 |            | -    |
| WF  | Staggered         |    |          |         |         |     |                                                                 |            | -    |
| WT  | Straight          | ✓  | ✓        | ✓       | ✓       | ✓   | X                                                               |            | -    |
| WT  | Wavy              | ✓  | X        |         |         |     |                                                                 |            | -    |
| WT  | Slits*            |    |          |         |         |     |                                                                 |            | -    |
| WT  | Louver*           |    |          |         |         |     |                                                                 |            | -    |




# **10kW Prototype Fabrication**

Small sample assembly test

Soldered edge spacers


View from air-side







#### **Need for New Correlations**



Bacellar, D., Aute, V., Radermacher, R., **CFD-Based Correlations, with Experimental Verification, for Air Side Performance of Round Finless Tube Heat Exchangers with Diameters below 2.0mm, (International Journal of Heat and Mass Transfer)** 

