

Innovative Manufacturing Process for Nuclear Power Plant Components via Powder Metallurgy & Hot Isostatic Pressing Methods

David W. Gandy, FASM
Nuclear Materials
Electric Power Research Institute
Davgandy@epri.com

DOE Advanced Methods of Manufacturing Workshop September 29, 2015

Innovative Manufacturing Process for Nuclear Power Plant Components via PM-HIP

Objective: Conduct design, manufacturing, and validation studies to assess PM-HIP as a method to produce both large, nearnet shaped components for nuclear applications across 3 families of alloys:

- 1. low alloy steels
- austenitic stainless steels
- 3. nickel-based alloys

Three Years Ago at Start of DOE Project...

- No Experience in Power Industry with PM-HIP
- Good industry experience in Aerospace, Aircraft, and Off-Shore Oil & Gas:
 - However, Power Industry had/has a lot to learn....
- Began work on 316L SS and Grade 91 (toward Code Acceptance)

Since 2012....

- Three ASME Code Cases—316L SS and Grade 91
- Developed Detailed EPRI Roadmaps for PM-HIP
- Developed New Co-free Hardfacing Alloy--NitroMaxx
- Initiated R&D aimed at Eliminating DMWs—Phase 2
- Began research/Code acceptance to recognize several other alloys:
 - 304L, 625, 690, 718, and SA508
 - ASTM and ASME
 - Aimed at SMRs and ALWRs
- Crack growth and SCC testing to support NRC recognition of 316L SS

Since 2012....

- Very Strong Collaborations with Carpenter Technology, GE-Hitachi, Rolls-Royce, U. of Manchester, NAMRC, ORNL, Synertech.
- Research at NSUF (ATR) on radiation embrittlement for multiple PM-HIP alloys—starts in 2016
- Valve and hardfacing project with EDF and Velan (2016)
- ORNL/EPRI project on "Can Fabrication"
- Continue to strive to meet Goals established by AMM Roadmap targeting Heavy Section Manufacturing

Powder Metallurgy Methods for Large Nuclear & Fossil Components

- Project Objectives
- Why Consider Powder Metallurgy for Large or Intricate Nuclear Components?
- Optimize an Alloy for Nuclear Performance
- Review 7 Project Tasks & Descriptions
 - Highlight 2 Components Manufactured
- Defining Success
- EPRI Roadmap on PM-HIP
- The Bigger Picture...

Why Consider Powder Metallurgy-HIP Produce Pressure Components?

To

- Industry leadership in the manufacture of large NPP components (Gen III & SMRs)
 - eg., RPVs, SG, valves, pumps, turbine rotors

- Transformational technology
 - Moves from forging and rolled & welded technologies to powder met/HIP

- Enables manufacture of large, complex "Near-Net Shape" components
- Excellent Inspection characteristics
- Eliminates casting quality issues
- Alternate supply route for long-lead time components

P/M-HIP Valve

Optimize An Alloy for Nuclear Performance

Valve/Pump Housing/Flange

- Tensile/Yield Strength
- Adequate Ductility & Toughness
- Weldability (optional)
- Corrosion Performance

RPV Internals

- Tensile/Yield Strength
- High Ductility & Toughness
- Weldabililty
- Corrosion Performance
- Fatigue Resistance
- Radiation Resistance
- Good Inspection Characteristics

- Near-Net Shape Capabilities
- Alternate Supply Route for Long-Lead Time Components

Powder Metallurgy-Hot Isostatic Processing

(courtesy of Carpenter Technology)

DOE Project Tasks

- 1. Modeling of NNS Component Alloy & Mold/Can Design
- Test Coupon Development, Demonstration, & Screening for Surfacing Applications
- 3. Low Alloy Steel PM/HIP Component Development
- 4. Nickel-based Alloy PM/HIP Component Development
- 5. Austenitic Stainless Steel PM/HIP Development
- 6. Mechanical & Metallographic Characterization
- 7. Corrosion Testing of Test Coupons

Task 5--Austenitic Stainless Steel PM/HIP Development

Lead Organization: GE-Hitachi

Steam Separator Inlet Swirler

(Austenitic Stainless Steel)

- Manufacture of a complex geometry to demonstrate PM/HIP for 316L SS
- SMR and ALWR applications
- Produce a NNS Inlet Swirl via PM/HIP
 - Evaluate dimensionally, metallurgically, and mechanically
 - Corrosion assessment is Task 7
 - Status: <u>Year-3</u> (2015).

Structural sketch of reactor pressure vessel and reactor internal components

GEH → Validation of 316L PM capabilities

BWR or ALWR Steam Separator Inlet Swirl

Inlet Swirl -- 3D Geometry

Vane Insert—one of 8 that fit into the swirler

Inlet Swirl Block—Mechanical Properties

Tensile Properties @ RT

- UTS = 88.2 ksi (608 MPa)
- -YS = 49.8 ksi (343 MPa)
- Elongation = 50.3%
- -ROA = 73.3%

- Toughness (Charpy Impact)Hardness
 - 173 ft-lbs (235 J) avg across 3 directions

87.0 RHB

	С	Mn	Р	S	Si	Cr	Ni	Мо	Cu	0	Fe
CF3M-ASTM	0.03		0.040	0.040							
A351	max	1.5 max	max	max	1.5 max	17-21.0	9-13.0	2-3.0	NA	NA	Bal
Powder	0.013	1.70	0.009	0.006	0.50	17.60	12.30	2.46	0.05	0.0145	Bal
BlockInlet Swirl	0.014	1.73	0.023	0.007	0.49	17.67	12.34	2.49	0.04	0.02	Bal

Meets GEH 316L wrought/cast requirements

Sensitization Susceptibility (ASTM A262)

-- Acceptable

100x

500x

Direction 1

Direction 2

Direction 3

Density, Porosity, Inclusions, Grain Size

- Porosity 99.9%
- Density 7.959 g/cm³
- Grain Size ASTM 7.0

Laboratory Number	Type A	Type B	Type C	Type D	Series	Direction
15757-MET1	0	0.5	0	2.0	Thin	Х
	0	0	0	1.0	Heavy	Λ
15757-MET2	0	0.5	0	2.5	Thin	V
	0	0	0	0.5	Heavy	1
15757-MET3	0	0.5	0	2.0	Thin	Z
	0	0	0	1.0	Heavy	L

Samples were taken at the longitudinal direction and examined at 100x magnification. Method(s): ASTM E45-13

Grain structure and inclusion content exceed GEH SS CRB wrought requirements

Fatigue Data—316L SS

Measured 316LSS LCF data compared with ASME and NUREG- 5704 data.

NUREG-5704: Effects of LWR Coolant Environments on Fatigue Design

Curves of Austenitic Stainless Steels

Corrosion Testing --SCC Crack Growth Rates (Preliminary Results)

Preliminary Table of SCC Growth Rates of Wrought and Powder Metallurgy 316L and 600M 288C Water with 20 ppb Sulfate as H₂SO₄ − ~30 MPa√m

			SCC Growth	Rate, mm/s		
Alloy	Specimen	K, MPa√m	High ECP	Low ECP		
			As-Red	eived		
Wrought 316L		~40	(≈3 x 10 ⁻⁸)	(≈2 x 10 ⁻⁹)		
PM 316L	C720	~40	~1 x 10 ⁻⁷	~2 x 10 ⁻⁹ s		
			20% Col	d Work		
Wrought 316L	C126	~30	~2 x 10 ⁻⁷	~2 x 10 ⁻⁸		
PM 316L	C719	~30	~2 x 10 ⁻⁷	~1 x 10 ⁻⁸		
			As-Received			
Wrought 600		~35	(≈2 x 10 ⁻⁸)	(≈1 x 10 ⁻⁹)		
PM 600M	C735	35	5 x 10 ⁻⁸	2 x 10 ⁻⁹		
			20% Cold Work			
Wrought 600	C129	30	2 x 10 ⁻⁷	3 x 10 ⁻⁸		
PM 600M	C734	30	1 x 10 ⁻⁷	1 x 10 ⁻⁸		

^{*} High ECP is 2 ppm O₂, which is ~150 – 200 mV_{she} Low ECP is 63 ppb H₂ which is ~-510 mV_{she}

Inlet Swirler Design & Manufacture --Modeling

Inlet Swirler Design & Manufacture --Fit up

Inlet Swirler Can Design & Manufacture

Inlet Swirler Manufacture

Task 4--Nickel-based Alloy (600M) PM/HIP Component Development

Lead Organization: GE-Hitachi

Chimney Head Bolt (Ni-based Alloy)

- Using PM/HIP, manufacture NNS bolt from Alloy 600M.
- Normally forged, then welded.
- Perform dimensional, microstructural, and mechanical characterization

Status: <u>Year-3</u> (2015).

Chimney Head Bolt

Note: Mild steel can is still attached.

Chimney Head Test Block—Mechanical Properties

Tensile Properties @ RT

- UTS = 102.5 ksi (706 MPa)
- -YS = 46.2 ksi (318 MPa)
- Elongation = 45.7%
- -ROA = 68.2%
- Toughness (Charpy Impact)
 - 144 ft-lbs (195 J) ave, 3 directions

Hardness

- 84.3 (HRB) ave

	С	Mn	S	Si	Cr	Ni	Cu	Fe	Cb
600 -ASTM A351	0.15 max	1.00 max	0.015max	0.50 max	14.0-17.0	72min	0.50 max	6.0-10.0	N/A
600M -N-580-1	0.05 max	1.00 max	0.015 max	0.50 max	14.0-17.0	72min	0.50 max	6.0-10.0	1.0-3.0
Block – C Head Bolt	0.024	<0.01	0.001	0.05	15.96	Bal	0.02	8.73	1.31

Density, Porosity, Inclusions, Grain Size

- Porosity 99.7%
- Density 8.469 g/cm³
- Grain Size ASTM 8.5

Lab Number	Type A	Type B	Type C	Type D	Series	Direction
5977-MET1	0	0.5	0	0.5	Thin	X
	0	0	0	0	Heavy	
5977-MET2	0	0	0	0.5	Thin	Υ
	0	0	0	0	Heavy	
5977-MET3	0	0.5	0	0.5	Thin	Z
	0	0	0	0	Heavy	

Samples were taken at the longitudinal direction and examined at 100x magnification

Method(s): ASTM E45-13

Defining Success....

- Success in this project is defined as:
 - 1. <u>Manufacture of 4 large components from low alloy steel</u>, stainless steel, and a Ni-based alloy (3 different alloy families)
 - Nozzle, curved RPV section, steam separator inlet swirl, chimney held bolt.
 - Establish design criteria, shrinkage & NNS quality
 - 2. Generate <u>excellent mechanical properties</u>, along with good product chemistry & uniform grain size
 - Application of <u>wear resistant surfacing</u> material to a substrate alloy
 - 4. Corrosion performance comparable to forgings

Technology Gaps/Applications Covered by PM-HIP Roadmap (1)

- Recognize ASTM A988 & A989 in ASME Code
- Nickel-based Alloy Specification Additions (ASTM and ASME)
- Recognize Alloys—304L, 625, 690, 718 & Property Data
- Recognize SA508 (RPV steels) in ASME Code
- Components for SMR and ALWR Applications
- Crack Growth and SCC Characterization (SS and Ni-based)
- Irradiation Embrittlement Assessment for Internals

Technology Gaps/Applications Covered by PM-HIP Roadmap (2)

- Hard-facing Materials Development
- Eliminate Dissimilar Metal Welds
- Advanced Valve Manufacturing
- Innovative Manufacturing for Nuclear
- Silicon Carbide Alloys
- Recognize Alloys via Regulatory Guides (NRC)
- Corrosion Resistant Coatings

Summary

PM-HIP for Structural & Pressure Retaining Applications:

- Large, complex, near-net-shape components
- Alternate supply route for longlead time components
- Improves inspectability
- Eliminates rework or repair in castings
- Hardfacing applications

The Bigger Picture.....

Supporting DOE AMM Roadmap toward Heavy Section Manufacturing

Highest Priority Items

- 1. Develop technical position paper that allows welds in vessels outside the beltline region.
- Develop/Demonstrate Powder metallurgy HIP of Plate (Ring Sections)
- 3. Develop/Demonstrate Nozzle Manufacturing Capabilities
- 4. Install/Commission large diameter HIP Unit 3.1 meters
- 5. Manufacture vessel internals via nickel-based alloys

The Team....

- Lou Lherbier & Dave Novotnak (Carpenter Technology)
- Myles Connor, James Robinson, Ron Horn (GE-Hitachi)
- Steve Lawler and Ian Armson (Rolls-Royce)
- Will Kyffin (N-AMRC)
- Dave Sandusky (X-Gen)
- Ben Sutton, Dan Purdy, Alex Summe (EPRI)

Together...Shaping the Future of Electricity